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Statistical modeling of changes in relative sea
level in Maine during the Holocene Era†

N. S. Altmana, G. Balcob, C. Crainiceanuc, W. R. Gehrelsd, J. Qiue,
J. Staudenmayerf* and P. Sullivang

Understanding past relative sea-level changes is important to a number of social and scientific questions, including
the effects of global climate change and future land-use planning under scenarios of accelerated sea-level rise with a
concomitant increased threat to coastal areas around the world. In particular, accurately characterizing millennial
sea-level changes is important in evaluating vertical movements of the Earth’s crust that happen in response to the advances
and retreats of ice sheets during long-term climatic cycles. In this paper, we analyze sea-level data from several Maine salt
marshes previously reported in a paper from the geological literature. We address these data and questions of geological
interest with a ‘smooth transition’ model. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION
From stories of lost cites to migrations across now-sunken land bridges to questions of the effects of global warming, there has long been
both public and scientific interest in understanding past changes in the height of the sea relative to the height of land (relative sea level or
RSL). At present, understanding the past history of sea level is critical for predicting the effect of natural process and human-induced climate
change on future sea-level rise and shoreline retreat. In this paper, we analyze 6000 years of RSL data collected from four sites along the
Maine coast (USA). We address these data with a parametric ‘smooth transition’ model and address questions of geological interest.

On time scales of less than millions of years, several processes act to change RSL, such as the following:

1. global climate-induced changes in the total volume of water in the ocean due to melting of glaciers or the thermal expansion of water,
2. slow vertical movements of the continents associated with depression and subsequent rebound of part of the Earth’s crust due to the

expansion and contraction of continental ice sheets during the last ice age, and
3. local and relatively sudden uplift or subsidence of coastal regions associated with earthquakes, other tectonic activity, or sediment

compaction.

Evidence of these processes consists both of historical records of water level from tide gauges maintained for navigational purposes and
of geologic evidence for higher and lower RSLs at times from hundreds to hundreds of thousands of years ago. Such geologic evidence,
examples of which are the subject of this paper, consists of identifying either marine deposits exposed above present sea level or terrestrial
deposits now found below sea level and determining the age of these deposits. During the time period relevant to this study (100–6000 years
before present), age is determined by radiocarbon dating, which relies on measuring the radioactive decay of organic carbon contained in
the deposits. Thus, geologic measurements of past RSL result in a series of data points (age versus past mean tide level minus present mean
tide level) that describe the RSL history at a given place. The problem facing histories of RSL through time (e.g., Pirazzoli, 1997).

A large number of modern geologic studies of sea level are concerned with the first and second aforementioned processes that operate on
a time scale of thousands to tens of thousands of years and a spatial scale that includes the whole earth (e. g. Peltier, 1998). These studies
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combine RSL histories from around the globe and fit dynamic models derived from first-principle physical considerations. Over the course
of a few thousand years, these models conclude that RSL is approximately linear in time. Although this work develops a self-consistent
and physically correct method of dealing with sea-level data in which the RSL at any given point is coupled to RSL at every other point
on the globe, it has limited use for interpreting localized variations in RSL histories (aforementioned process 3), which might be caused by
earthquake-related deformation, volcanic activity, sediment compaction, or changes in local tidal range (Plag et al., 1998).

At present, however, there is no satisfactory analytical framework available to analyze these types of localized variations. The two most
common methods previously used by geologists to summarize localized RSL data are interpolation and heuristic smooths of the data. ‘Error
envelopes’ created by connecting the corners of + / - one standard error bars centered around each point are often displayed. Numerical
summaries consisting of confidence intervals for the slopes of segments of the curves that appear to be linear are sometimes included.
Comparison of curve estimates (across sites or across researchers within sites) typically rely on either visual identification of seemingly
common features or on comparisons of confidence intervals around the estimated slopes. In this paper, we suggest that statistical analysis
using parametric non-linear models provides a useful framework for analysis of localized millenial-scale RSL data. This methodology allows
objective comparisons of RSL data collected from different sites or by different researchers. We apply this methodology to a set of RSL data
from the coast of Maine, USA and show that our procedure yields new geologic insights that were not obvious in previous analyses.

1.1. Gehrels, Belknap, and Kelley (1996)

Like most of the northern half of North America during the last glaciation, the coastline of Maine was covered by the Laurentide Ice Sheet; it
became ice-free between 16,000 and 12,000 years ago. During glaciation, the weight of the ice pushed down the land surface in this region.
By 15,600 years ago, when the ice sheet began to retreat, the land was still depressed by as much as 170 m; thus, RSL was higher than
present, and the coastline was well inland of its present position. Just south of the Laurentide Ice Sheet, an elevated ridge had formed in
the Earth’s crust, known as the glacial ‘forebulge’. After the weight of the ice sheet was removed (16,000 and 12,000 years ago ), Maine
rebounded upwards, and RSL fell. In the area just south of the ice sheet, land level sank, and RSL rose as a result of the shrinkage of the
‘forebulge’. As time went on, the ice sheet retreated northward, and the zone of coastal subsidence moved northwards with the ice. In the
last few thousands of years, therefore, the coastline of Maine has been sinking, and RSL is rising.

Work by Gehrels et al. (1996) studies the RSL history over the past 6000 radiocarbon (14C) years at four sites along the Maine (USA)
coast: Wells, Phippsburg, Gouldsboro, and Machiasport. Their paper creates four site-specific scatterplots of estimated sea level (relative to
present) over time in the past 6000 14C years (the middle and late Holocene period). The 14C time scale deviates somewhat nonlinearly from
the calendar time scale, because of variations in the atmospheric concentration of the radioactive 14C isotope over time, but to date, organic
samples younger than 50,000 calendar years is conventionally used in geology and archeology. Five thousand 14C years is approximately
5700 calendar years and zero calendar years is equal to zero 14C years.

Figure 1. Scatterplots of relative sea level versus time. Sea levels have been rising over time: relative sea level is calculated as previous mean tide minus the
mean tide level today. Age is measured in Carbon-14 (14C) years, a scale that is commonly used in geology for samples younger than 50,000 calendar years.

Five thousand 14C years is approximately 5700 calendar years, and zero years agree on both scales. Total sample size .n/D 35:
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Each point in Figure 1 represents a subsample from a core sample taken from the relatively undisturbed area near the bottom of one of
the salt marshes. Twenty-seven core samples were taken, twenty-two of them provided one data point, two yielded two data points, two
provided three, and one provided four. When multiple data points came from a single core, they were from widely separated points in the
core. Where to take core samples and which parts of the sample to analyze were chosen to make it likely that the data would cover the time
period of interest. After the subsamples were chosen, each was analyzed to yield estimates of two quantities: deposition date (the x-axis of
the scatterplot) and sea level at deposition time (the y-axis). The isotope and chemical methods that are used to produce those estimates are
explained in detail in Gehrels et al. (1996). We summarize them here briefly.

Deposition time was estimated by 14C dating the organic matter in the subsample and assuming that the age of the organic matter
coincides with deposition time. Sea level height is estimated from fossilized foraminifera (single-celled shelled organisms) in the subsample.
The geologists inferred the mean high-tide level at the time the foraminifera were alive from the modern distribution of these organisms on
the surface of the salt marshes. This estimates the relative mean tide level at the time the subsample was deposited when it is combined
with two other estimated quantities: the depth of the subsample relative to current high-tide level and an estimate of the tidal range when the
subsample was deposited.

One focus of Gehrels et al. (1996) was to address the question of whether ‘differential crustal motion’ along the coast of Maine has
occurred during the past 5000 years. Simply put, this question asks whether RSL rise along the Maine coast has varied from one locality to
the next because of different rates of vertical land movement. If it has, the coast of Maine is geologically less stable than if it has not. In the
following sections, we formulate and fit a parametric model to these data and address the aforementioned question with the parameters in
the model.

2. A STATISTICAL MODEL FOR SEA LEVEL CURVE ESTIMATES
The next three sections describe our model for the RSL data. Sections 2.1 and 2.2 develop the regression model relating the subsample
age and estimated sea level. Section 3 describes how we fit the model and make inferences. The results of estimation, inference, geological
interpretations, and the relevance to current sea levels are discussed in Section 4.

2.1. The data and measurement error

Let i D w;p; g;m represent the sites (Wells, Phippsburg, Gouldsboro, and Machiasport) and j D 1; : : : ; ni represent the observations from
a given site. Letting the first index denote the site and the second the repetition, we define the vectors Y (RSLs) and X (ages) as follows:

YD
!
Yw1; : : : ; Ywnw ; Yp1; : : : ; Ypnp ; Yg1; : : : ; Ygng ; Ym1; : : : ; Ymnm

"T
; and

XD
!
Xw1; : : : ; Xwnw ; Xp1; : : : ; Xpnp ; X31; : : : ; Xgng ; Xm1; : : : ; Xmnm

"T
:

Let nD nw C np C ng C nm be the total number of data points. Figure 1 shows the observed data.
Because the age of each subsample is estimated by radiocarbon dating, the observed age is the true age plus error. The radiocarbon dating

lab supplies an estimate of the standard deviation of each estimated age . O!age;ij /. In this dataset, we find the measurement error to be quite
small relative to the range of ages considered. More specifically, let !2xi be the variance of the true ages considered at site i . A measure

of the amount of measurement error in a data point is the reliability ratio: "ij D
!2
xi

!2
xi
C!2

age;ij

(e.g., Carroll et al., 1995). For these data,

the estimated reliabilities are greater than 96% for all ij . As a result, we treat the ages, Xij as if they contain no measurement error. The
results of an analysis that included a functional model for the measurement error did not differ substantively from the results reported here
(unpublished technical report, Staudenmayer, Altman, Balco, Gehrels, Qiu, and Sullivan).

2.2. Regression model for relative sea level

As discussed in Section 1, global scale models for millennial scale sea level changes exist, but those models do not consider local movements
of the earth’s crust. Because the purpose of Gehrels et al. (1996) is to assess the RSL history on a local level, we develop an empirical model
to summarize the data at hand.

The models we use are a series of nested regression models with independent Gaussian errors. Although a few of the cores provided more
than one data point (Section 1.1), we did not find evidence for correlation in the error in that small sample. As mentioned in our introduction,
global scale sea-level models derived from first principle considerations are approximately linear over the time scale of our data. To allow
for local and relatively sudden changes in sea level, we use a slightly more general model. The need for a more general model was suggested
by the figures in Gehrels et al. (1996).300
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Figure 2. Two illustrations of equation (1) and the smooth transition function with ˇ0 D 1:0, ˇ1 D !0:2, ˇ2 D !1:0, " D 0:5, and # D 0:2 and 0.02.
The transition zones, " ˙ #; are shown

The regression model for the conditional mean we use is based on the smooth transition model (e.g., Tishler and Zang (1981) and reviewed
in Seber and Wild, 1989, Section 9.4.2a):

Yij jXij
ind:! N

n
E.Yij jXij /; !2i

o
where

E.Yij jXij /D ˇ0i C ˇ1iXij C ˇ2iu.Xij " #i ; $/; j D 1; : : : ; ni ; i D w;p; g;m; with (1)

u.´; $/D 0 when ´6 "$;

D "´
4

16$3
C 3´2

8$
C ´

2
C 3$

16
when " $ < ´6 $; and

D ´; when ´> $

The unknown parameters for sites i D w;p; g;m are: ˇ0i , the intercept; ˇ1i , slope prior to the change area; ˇ2i , the additional slope
following the transition interval; #i , the center of the transition zone; $ , the half length of the transition zone; and !i , the independent
Gaussian error standard deviation. When Xij is outside of #i ˙ $ , the model is a segmented linear regression, and as $ ! 0, the regression
function becomes arbitrarily close to a segmented linear model. For positive $ , the mean function has continuous second derivatives in the
parameters. See Zang (1980) for more details and Figure 2 for two illustrations of this ‘smooth transition’ function. Because there is a small
amount of data, we constrain $ to be the same over all the sites. We estimated $ from the data, and the estimated $ was less than half
the smallest gap between two ages. As a result, the fitted model reverted to a segmented model that has a likelihood that is smooth in its
parameters. We note that this mean function is not specific to the geological application; it is simply a smooth function that has segmented
regression as a special case. With more data, we believe a non-parametric regression approach would be appropriate, but that is beyond the
scope of the current dataset.

The aforementioned model is termed saturated because each site has its own parameters. Nested within this model are simpler models
where certain parameters are constrained to be the same across certain sites. In the next subsection, we fit a series of these nested models to
the data and arrive at a parsimonious model.

3. FITTING THE MODEL AND INFERENCE
Because u./ has continuous second derivatives, fitting the model relies on standard methods. We fit the model by maximum likelihood using
the gnls() set of tools in the nlme() library in R (Pinheiro and Bates, 2000). The data and the R program we used are available from
the journal. Nested within the saturated model (1) where all parameters are site specific, we considered a number of variants (suggested
by the data) where certain parameters are constrained to be constant across at least some of the sites. Table 1 summarizes a representative
few. In those tables, we use the site initials as subscripts when sites share parameters. For instance, Ǒ0wgm means that Wells, Gouldsboro,
and Machiasport have the same intercept. We choose model 5 in the table below because it minimizes Bayesian Information Criteria (BIC).
There are 125 nested models in this family (12 ways to make each of 5 parameters somewhat site specific), and we did not fit all of them.
As a result, we cannot be certain that model 5 has the smallest BIC among all the possible nested models. Nonetheless, Figure 3 and Table 1
suggest that model 5 strikes a balance between model parsimony and fidelity to the data.
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Table 1. This table summarizes a sample of the models we fit: which parameters are site specific, the number
of parameters in the model, and the associated log likelihood and Bayesian Information Criteria. Based on
this summary, we choose model 5

Site specific Number
Model parameters parameter Log(L) BIC

1. None 5 -34.11 85.99
2. !2i for each site 8 -28.48 85.41
3. !2i for each site and 11 -13.27 65.65

ˇ2i s for each site
4. !2i for each site and 12 -11.68 69.58

ˇ2i s for each site and
#p for Phippsburg

5. !2i for each site and 13 -5.25 56.72
ˇ2g for Gouldsboro and
all parameters for Phippsburg

6. all parameters for all sites 20 -3.90 78.91

Figure 3. The fitted regression mean functions that correspond to models 1, 5, and 6 are shown with the site-by-site scatterplot data. Note that the fits that
correspond to models 5 and 6 (the selected model and saturated model) are nearly identical, but model 5 uses seven fewer parameters, and both of those

models have site-specific variances

Because the sample size is small (nD 35) relative to the number of parameters in the model, we assess the variability around our estimates
by using BCA bootstrap confidence intervals. The BCA method of making confidence intervals both reduces bias and accounts for
non-normally distributed sampling distributions and often produces intervals with superior properties. A technical description of this method
is outside the scope of this paper, but an accessible introduction is in Chapter 14 of Efron and Tibshirani (1993).

We computed the bootstrap by resampling standardized residuals from the estimate of model 5. We chose this way of implementing the
bootstrap rather than a method where (X DAge and Y DRSL) pairs were resampled (within site) because the geologists selected samples
from locations within the marsh with varying depths to ensure that the ages are fully (or appropriately) distributed across the time range of
interest. By the principle of superposition, deeper samples are older. As a result, a bootstrap sample with X ’s that were not distributed over
the age range being studied would not accurately represent the way the experiment was conducted.

Table 2 contains estimates of the regression parameters from model 5 and BCA confidence intervals based on 5000 bootstrap samples.
Figure 4 contains curve estimates from model 5 and approximate 95% pointwise confidence envelopes. Each point on the envelope was
computed by using the bootstrap sample and the BCA method.302
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Table 2. This table contains the estimated regression parameters in model 5 and 95% confidence intervals
based on the BCA method and 5000 bootstrap samples. See Figure 6 also

95% 95%
Parameter Site(s) Lower Estimate Upper

Ǒ
0wgm Wells -0.9108 -0.5604 -0.1129

Gouldsboro
Machiasport

Ǒ
0p Phippsburg -0.1877 0.5113 1.3958
Ǒ
1wgm Wells -0.6126 -0.3722 -0.1040

Gouldsboro
Machiasport

Ǒ
1p Phippsburg -1.1473 -0.9218 -0.6757
Ǒ
2wm Wells -1.3260 -0.9392 -0.6311

Machiasport
Ǒ
2p Phippsburg -49.5381 -18.9675 -12.2023
Ǒ
2g Gouldsboro -2.7803 -1.9736 -1.7014
O#wgm Wells 2.1375 2.4523 2.7212

Gouldsboro
Machiasport

O#p Phippsburg 4.7667 4.8311 4.9180

Figure 4. The fitted regression functions from model 5 and BCA bootstrap-based pointwise 95% envelopes

4. DISCUSSION OF INFERENCES AND GEOLOGICAL SIGNIFICANCE
Figure 5 shows parameter estimates for the selected model (number 5) with the sites arrayed from SW to NE. This figure summarizes the
geologic variability of RSL curves along the Maine coast. These parameter estimates lead to three important conclusions.

First, the modeled RSL curve at Phippsburg is significantly different from those at other sites: sea-level rise slowed from middle Holocene
rates earlier at this site (larger O#p which means older change point) but was more rapid than at others thereafter (more negative Ǒ1p , which
means steeper slope in years since the change point). This has several possible explanations. First, the salt marsh in Phippsburg from which
the samples were obtained is located behind a barrier beach and is connected to the open Gulf of Maine by a tidal inlet. As a result, the
behavior of the tides at this location and the distribution of the foraminifera from which the historical sea levels were inferred are possibly
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Figure 5. The regression parameter estimates (model 5) and BCA bootstrap-based 95% confidence intervals are plotted for each site with the sites arrayed
from SW to NE

atypical. Second, it is possible that this portion of the Maine coast is unstable relative to surrounding areas. Finally, of course it is possible
that there has been an unrecognized data collection error. In any case, further examination of this site is warranted. It would perhaps be rash
to base an important conclusion on so few data points. Specifically, the conclusions that the Phippsburg site is different relies on the two
oldest samples from that site. Note, however, that these samples came from different core samples and represent a significant fraction of
the data collected from that site. Also note that our observation that Phippsburg has an anomalous RSL history differs from the conclusion
of Gehrels et al. (1996). This points out the need for a consistent and statistically justifiable method of comparing radiocarbon-based
RSL histories.

Second, with the exception of anomalous results at Phippsburg, estimated model parameters change slowly with geographic position
(Figure 5). The rate of mid-Holocene RSL rise . Ǒ2g / is smaller in the Gouldsboro site, but these sites have experienced essentially the same
RSL history in the past, approximately 3000 years. These sea level histories are all generally consistent with the histories predicted by the
global geophysical models discussed in Section 1 (Peltier, 1998). This observation strongly supports the conclusion of Gehrels et al. (1996)
that the region of eastern Maine (near Machiasport), where an anomalous uplift in the land was initially suspected, has, in fact, been stable
relative to areas further south and west.

Except Phippsburg’s, all the estimated intercepts . Ǒ0wgm/ are negative. Although it is tempting to constrain the regressions to go through
the origin because current RSL is ,by definition, zero, this would not be appropriate because our model applies only to the time scale range
of the observed data, which does not include the present. Constraining the regressions to go through zero (without adding another change
point) would be similar to adding a leverage point to each site’s data set. It is said that the negative intercepts indicate that an extrapolation
of the model to the present is consistent with an increase in the rate of RSL rise in very recent years. This is also supported by other data
such as recent tide gauge records and by more detailed analyses of very recent salt marsh deposits. It is important that our model allows us
to correctly infer this fact from much sparser and older data points. Because estimating the changing rate of sea level rise is important to
formulating models for the future effects of global warming, it is encouraging that our model may allow us to search for this event even at
sites where only a sparse RSL record exists.

The model we present, therefore, provides a significant improvement over previous means of comparing local RSL curves, and earlier, we
show that it generated useful geologic insights from relatively sparse data. The basic procedure is flexible enough to accommodate sea-level
curves of varying forms and is applicable to a variety of geologic problems concerned with local variations in RSL. However, although the
model we use for Gehrels et al. (1996)’s data is both flexible enough to fit these data well and parsimonious enough to provide reasonable
inferential power, other models certainly might be more appropriate for other data sets. In other settings, a spatial model that includes
information about the relative proximity of the marshes might be appropriate. To reliably detect such a structure, one would need more than
four marshes though.

Finally, our model can also be used in a power analysis to plan future experiments and determine the required sample size at each site as
follows: given (1) a hypothesized relative sea-level curve; (2) roughly feasible ranges for the distributional parameters described in Section 2;
and (3) a proposed sample size, one could easily simulate the data one might expect to collect and fit a model to the simulated data. Monte
Carlo methods could then be used to estimate the probability of detecting a specific hypothesized difference of a certain size between two
sites. If those probabilities are deemed too low, this procedure can be repeated with higher proposed sample sizes until the probabilities were
deemed to be large enough.304
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