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This paper describes computer code for estimating the effect on cosmogenic-nuclide production rates of
arbitrarily shaped obstructions that partially or completely attenuate the cosmic ray flux incident on a
sample site. This is potentially useful for cosmogenic-nuclide exposure dating of geometrically complex
landforms. The code has been validated against analytical formulae applicable to objects with regular
geometries. It has not yet been validated against empirical measurements of cosmogenic-nuclide con-
centrations in samples with the same exposure history but different shielding geometries.
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1. Importance of geometric shielding of the cosmic-ray flux
to exposure dating

Cosmogenic-nuclide exposure dating is a geochemical method
used to determine the age of geological events that modify the
Earth’s surface, such as glacier advances and retreats, landslides,
earthquake surface ruptures, or instances of erosion or sediment
deposition. To determine the exposure age of a rock surface, one
must i) measure the concentration of a trace cosmic-ray-produced
nuclide (e.g., 10Be, 26Al, 3He, etc.); and ii) use an independently
calibrated nuclide production rate to interpret the concentration as
an exposure age (see review in Dunai, 2010).

Typically (Dunai, 2010), estimating the production rate at a
sample site employs simplifying assumptions that i) the sample is
located on an infinite flat surface; ii) all cosmic rays responsible for
nuclide production originate from the upper hemisphere; and iii)
any topographic obstructions to the cosmic-ray flux can be repre-
sented as an apparent horizon below which cosmic rays are fully
obstructed, and above which they are fully admitted (the ‘opaque-
horizon’ assumption). These assumptions are adequate for a wide
range of useful exposure-dating applications, but they fail for
sample sites located on irregular surfaces with a roughness scale
similar to the characteristic cosmic ray attenuation length in rock
All rights reserved.
(order 1 m), or likewise for sample sites located on or near meter-
scale boulders or other objects.

The opaque-horizon assumption fails in these situations for two
reasons. First, rock is denser than air. Attenuation of cosmic rays is
proportional to the amount of mass they travel through. Thus, if
cosmic raysmust penetrate both the overlying atmosphere and also
some additional thickness of rock (or any massive material, e.g.,
soil, sediment, water, etc.) to reach a sample site, then the pro-
duction rate at that sitewill be less than it would be in the reference
case of an infinite flat surface (where cosmic rays only travel
through air to reach the sample site). If the thickness of rock tra-
versed is much longer than the cosmic-ray attenuation length (e.g.,
tens of meters or more), then the cosmic-ray flux from that direc-
tion is completely attenuated and the opaque-horizon assumption
is adequate. However, if it is relatively short (order 1 m) then the
cosmic-ray flux is only partially attenuated and this assumption
fails. This effect is referred to in this paper as ‘geometric shielding.’
The term ‘self-shielding’ is sometimes used to describe this effect,
although that term is somewhat misleading because both the rock
that is being sampled (‘self’) and other nearby objects could shield
the sample site.

Second, a fraction of cosmogenic-nuclide production at a sample
site near the Earth’s surface is due to secondary particles that
originate in nuclear reactions relatively close to the sample site.
Because the mean atomic weight of rock is greater than that of air,
and also because air is less dense than rock so it is more likely that
some particles will decay before interacting, the yield of these
secondary particles is greater from rock that from air. Thus, when a
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sample is surrounded by more air, and less rock, than it would be if
it was embedded in the reference infinite flat surfacee for example
if it lies on a steeply dipping surface, or within a relatively small
boulder e then the flux of these secondary particles, and therefore
the production rate, is correspondingly less. This effect is referred to
here as the ‘missing mass effect;’ Masarik and Wieler (2003) also
called it the ‘shape effect.’

The magnitude of the geometric shielding effect can vary from
negligible to complete attenuation depending on the arrangement
and size of obstructions. The magnitude of the missing mass effect
is expected to be at most w10% of the production rate (i.e., for the
extreme case in which a sample lies at the top of a tall, thin pillar;
Masarik and Wieler, 2003). Thus, in many common geomorphic
situations, geometric shielding is expected to be significantly more
important (a tens-of-percent-level effect on the production rate)
than the missing mass effect (a percent-level effect). Geometric
shielding is also easier to calculate. The remainder of this paper
describes computer code that computes geometric shielding for
arbitrary geometry of samples and obstructions; this calculation
only requires determining the lengths of ray paths that pass
through objects and applying an exponential attenuation factor to
each ray path. Computer code to implement this is simple and fast
enough to permit, for example, dynamic calculation of shielding
factors in a model where the shielding geometry evolves during the
exposure history of a sample. Previous attempts to quantify the
missing mass effect, on the other hand, have employed a complete
simulation of the cascade of nuclear reactions in the atmosphere
and rock that give rise to the particle flux at the sample site, using
first-principles particle interaction codes such as MCNP or GEANT
(Masarik and Beer, 1999, and references therein). These codes are
slow, complex, and require extensive computational resources. To
summarize, because of the difference in the potential magnitude of
these two effects, there are likely to be many geomorphically
relevant situations involving samples with complicated shielding
geometry in which one can estimate production rates at useful (i.e.,
percent-level) accuracy using only the relatively simple geometric
shielding calculation. The calculations in this paper consider only
the geometric shielding effect and do not consider the missing
mass effect. A valuable future contribution would be to develop a
simplified method of approximating the missing mass effect using
only geometric considerations that would not require complex
particle physics simulation code.

Although both the geometric shielding effect and the missing
mass effect follow from well-established physical principles, there
has been very little attempt to verify calculations of these effects by
measuring cosmogenic-nuclide concentrations in natural situa-
tions where they are expected to be important. For example, sim-
ulations of the missing mass effect predict a relationship between
boulder size, sample location on a boulder, and cosmogenic-nuclide
concentration. Although some researchers have argued that this
relationship is or is not present in certain exposure-age data sets
(Masarik andWieler, 2003; Balco and Schaefer, 2006), the scatter in
the data sets is similar in magnitude to expected effects, so these
results were ambiguous. Kubik and Reuther (2007) attempted to
conduct a better constrained experiment by matching cosmogenic
10Be concentrations measured on and beneath a cliff surface, where
both geometric shielding and missing mass effects would be ex-
pected to be important, with model estimates of these effects.
However, they were not able to reconcile observations with pre-
dictions at high confidence. One purpose of this paper is to facilitate
future attempts to validate geometric shielding factor estimates by
simplifying the calculation of shielding factor estimates for irreg-
ular shapes characteristic of natural outcrops or boulders.

The computer code described in this paper was originally
developed for exposure-dating of precariously balanced rocks used
in seismic hazard estimation. These rocks are 1e2 m in size and
irregular in shape (e.g., Fig. 1), so most sample locations are
partially shielded by the rocks themselves. To quantify these effects,
in Balco et al. (2011) we developed computer code to calculate
geometric shielding factors for arbitrarily shaped objects. However,
that paper did not include the code or describe it in detail. The
present paper provides a complete description and includes the
code as supplementary information. In addition, the code and
accompanying documentation are available online at http://hess.
ess.washington.edu/shielding.
2. Definition of geometric shielding; previous work

The treatment of geometric shielding in this paper follows that
of Lal (1991), whichwas also adopted byDunne et al. (1999), Lal and
Chen (2005), and Mackey and Lamb (2013). Dunne et al. (1999)
provide a complete and clear derivation of the following equa-
tions. Cosmic ray intensity as a function of direction I(q,f), where q

is the zenith angle measured down from the vertical and f is the
azimuthal angle, is assumed to be constant in azimuth but vary
with zenith angle, such that:

Iðq;fÞ ¼ I0cos
mðqÞ (1)

I0 is the maximum intensity (in the vertical direction) and the value
of m has been estimated from cosmic-ray observations and is
generally taken to be 2.3 (see Gosse and Phillips, 2001, for addi-
tional discussion). The total flux Fref that an object receives in the
reference case of full exposure to the entire upper hemisphere, that
is, when a sample site is located on an infinite, unshielded, flat
surface, is:

Fref ¼ I0

Z2p

f¼0

Zp=2

q¼0

cosmðqÞsinðqÞdq df (2)

This can be evaluated analytically with the result that:

Fref ¼ I0
2p

mþ 1
(3)

Intensity I would typically have units of particles cm�2 sr�1 s�1.
However, the purpose of this work is to calculate a dimensionless
shielding factor that is the ratio of the production rate at a shielded
site to that at an identically located unshielded site, so neither the
units nor the absolute value of I or Fref are relevant.

Geometric shielding is here defined to be the integrated
shielding effect of any objects more dense than air that cosmic rays
must traverse to reach a sample site. This depends on the size and
location of nearby objects relative to the sample. Geometric
shielding of the cosmic-ray flux from a particular direction, incident
on a particular sample location, can be represented as the mass
thickness traversed by cosmic rays from that direction before they
reach the sample. This mass thickness is rr(x,y,z,q,f) and has units
of g cm�2. r is the mean density of the material traversed by the
cosmic rays (g cm�3). r(x,y,z,q,f) is the linear thickness (cm) of this
material that a cosmic ray arriving from zenith angle q and azimuth
f must traverse to reach a sample site whose location is defined by
Cartesian coordinates x, y, and z. Attenuation of cosmic rays trav-
eling in a particular direction is then defined to be exponential in
mass thickness with a constant attenuation length Lp, such that if
the intensity of the incoming cosmic-ray flux in that direction is I
and the intensity of the cosmic ray flux in that direction at the
sample site is Is, then Is/I ¼ exp(�rr/Lp). Note that Lp, which rep-
resents an attenuation length along a single incidence direction for
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Fig. 1. Photograph and shape model of a precariously balanced rock in southern California, USA (Balco et al., 2011). The shape model was photogrammetrically generated: tape
markers (visible in photo) were attached to the rock, the rock was photographed from multiple directions, and the software package Photomodeler was used to generate a rep-
resentation of the rock as a set of triangular facets.
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cosmic rays with energies appropriate for inducing spallation re-
actions in rock, differs from the apparent attenuation length for
total spallogenic cosmic-ray production with depth below an
infinite flat surface, which is commonly used in exposure-dating
calculations and is usually denoted as L. Dunne et al. (1999)
showed that for constant Lp and m ¼ 2.3, Lp x 1.3 L.

Thus, the cosmic-ray flux at a sample location (x,y,z) subject to
geometric shielding is:

F ¼ I0

Z2p

f¼0

Zp=2

q¼0

cosmðqÞsinðqÞe�
rrðx;y;z;q;fÞ

Lp dq df (4)

The dimensionless shielding factor for that sample location
relative to an unshielded sample is then F/Fref. Computing this re-
quires evaluating the integral in Equation (4), which in turn re-
quires computing the attenuation pathlength r(x,y,z,q,f) for
arbitrary sample location and cosmic ray incidence direction.

This approach to computing geometric shielding is routinely
used in nuclear physics to compute fluxes of particles that are
simply absorbed in exponential proportion to mass traversed, for
example in calculating x- or gamma-ray penetration in objects. As
discussed above, however, when applied to calculate shielding
factors for high-energy cosmic-ray spallation, it disregards the fact
that cosmic ray interactions within rock may yield secondary par-
ticles that themselves could contribute to nuclide production. In
addition, the assumption of constant Lp is an important simplifi-
cation. In reality, the attenuation length for cosmic rays depends on
their energy. The energy spectrum of cosmic rays varies with
location in the Earth’s atmosphere and magnetic field as well as
with zenith angle, so Lp is also expected to be a function of these
parameters. In addition, different nuclides of interest are produced
by reactions with different threshold energies, so a single value of
Lp is not expected to be appropriate for all nuclides. Although in
this code we have disregarded these effects by assuming constant
Lp, if theoretical predictions of neutron energy spectra, their vari-
ation with zenith angle, and the corresponding variations in
effective attenuation length were available for a given sample
location (presumably from a first-principles particle physics
simulation), the code could easily be modified to include variable
Lp, or to integrate over an energy spectrum in addition to solid
angle (the MATLAB code is commented to this effect in the
appropriate locations).

This code is not appropriate for describing attenuation of the
cosmic-ray muon flux. However, the effective attenuation length
for muons in rock is an order of magnitude ormore longer than that
for high-energy neutrons, so the effect of meter-scale surface ob-
structions on production rates due to muons is expected to be
negligible.

Several previous authors have computed shielding factors using
the assumptions and formulae described above for regular geom-
etries where attenuation path lengths r can be represented by
analytical functions of x, y, z, f, and q. Dunne et al. (1999) computed
shielding factors at and below flat and dipping surfaces subject to
complete obstruction of the cosmic-ray flux from some fraction of
the upper hemisphere. Lal and Chen (2005) also computed
shielding factors below dipping surfaces, and in addition for the
interior of spherical and cubic boulders. Mackey and Lamb (2013)
considered spheres. However, natural rock landforms that one
might wish to exposure date are commonly irregularly shaped,
which requires a numerical integration method. The method
described here uses Monte Carlo integration to evaluate the inte-
gral and a ray-tracing method, applied to a representation of the
shielding objects as a set of triangular facets, to compute the path
lengths. This approach is similar to that used by Plug et al. (2007) to
compute the cosmic-ray shielding effect of a forest.

3. Description of computer code

The computer code described in this paper is written in MAT-
LAB, a high-level programming language designed for mathemat-
ical computation and commonly used by Earth scientists. Several
other computational tools for cosmogenic-nuclide production rate
calculations are also written in MATLAB (Balco et al., 2008;
Goehring et al., 2010). The typical workflow for using this code
would be as follows: First, generate a shapemodel for the objects of
interest. Typically one would use a photogrammetric method or a
laser scanning system to do this. Second, locate sample locations in
the same coordinate system as the shape model. Finally, use the
code supplied here to estimate geometric shielding at the sample
site by Monte Carlo integration.

3.1. Shape models

A “shape model” as used here is a set of triangular facets that
enclose one or more volumes (Fig. 1). Typically, one would define a
shape model so that the facets form a closed irregular polyhedron
for each obstruction. However, one could also define a set of facets
that did not form a closed volume, for example to represent a cliff
face or hillside.



Fig. 2. Intersection of a representative cosmic ray path with the shape model shown in
Fig. 1. The shape model is shown as a wireframe mesh. A near-vertical cosmic ray path
to a sample location on the pedestal below the precariously balanced rock enters the
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This code reads in shape files defined in the ASCII .stl file
format.1 “STL” stands for “standard tesselation language.” This file
format is commonly used in 3-D modeling software, 3-D printing,
and computer-aided design and manufacturing. The file begins
with a line defining the name of the solid, and is followed by a
series of line groups, each of which defines the vertices of a trian-
gular facet. An example of a .stl file defining two facets is as follows:

Each line beginning with ‘vertex’ contains the x, y, and z co-
ordinates of one of the vertices of the facet. In general, a .stl file
contains no scale information and the units are arbitrary. This code
assumes that the coordinates of the vertices have units of meters.
The three values in each line beginning with ‘facet normal’ are
intended to define the unit normal vector of each facet. However, as
this information is redundant with the coordinates of the vertices,
many software packages dealing with .stl files (including this one)
ignore values in these positions or insert zeros. In some imple-
mentations of .stl files, the order of the vertices indicates ‘inside’
and ‘outside’ sides of each facet, i.e., the vertices are defined in
clockwise order when viewed from the outside of the object. The
order of the vertices is ignored here. A binary version of the .stl file
format exists, but is not supported here.

In previous work (Balco et al., 2011) we used the photogram-
metric software Photomodeler (www.photomodeler.com) to
generate .stl files describing precariously balanced boulders that
were the subject of an exposure-dating study. Fig. 1 shows an
example. Many commercial and open-source software packages
with similar capabilities exist.

3.2. Path length calculation

A shape model is a collection of sets of three [x,y,z] triples, each
set defining a facet. Given this information and the coordinates of a
sample location in the same coordinate system, the thickness of
rock traversed by a cosmic ray with arbitrary direction is calculated
using the following algorithm.

1. Change coordinates. Shift the coordinates of the shapemodel and
sample location so that the sample location is at coordinates
[0,0,0]. That is, if a vertex as originally defined in the shape
model has coordinates [a,b,c] and the sample location as origi-
nally defined has coordinates [as,bs,cs], transform them to new
coordinates [x,y,z] where x ¼ a � as, y ¼ b � bs, and z ¼ c � cs.
Basically, the effect of this transformation is to represent each
1 e.g., http://en.wikipedia.org/wiki/STL_(file_format).
vertex in the shape model as a vector originating at the sample
site.

2. Find intersections between a cosmic ray and each facet in the shape
model. In the sample-centered coordinate system, the vector
representing a cosmic ray incident on the sample location is a
linear combination of the vectors representing the corners of
any facet. If the vector representing a cosmic ray incidence di-
rection has coordinates xr, yr, and zr, and the three vertices of the
facet have coordinates xi, yi, and zi where i ¼ 1...3, then:

2 32 3 2 3

4 x1 x2 x3
y1 y2 y3
z1 z2 z3

54p
q
r
5 ¼ 4 xr

yr
zr

5 (5)

This is useful because if p, q, and r are all greater than zero, then
the cosmic ray passes through the facet. Thus, solving Equation
(5) for each facet enables one to identify those facets that the ray
passes through. Fig. 2 shows an example. In principle this is
computationally inefficient because one must consider all facets
for each cosmic ray, so computation time scales linearly with the
number of facets in the shape model. However, for typical shape
models with hundreds of facets, it is fast enough for this
purpose.

3. Calculate the path distances in rock. Having identified the facets
in the shape model that the ray passes through, one can
compute i) the points of intersection between the ray and each
facet, and ii) the distance between each intersection point and
the sample location. If there are a large number of objects in the
shapemodel, then there could bemany such intersection points.
This requires someway of determining which sections of the ray
path are inside objects and which are outside. The algorithm to
accomplish this involves assuming that the sample location is
top of the rock, exits the bottom of the rock, and enters the pedestal to reach the
sample location. Facets that intersect the ray path are highlighted by gray fill. The
portion of the cosmic ray path that traverses rock is highlighted by a thickened line.

http://www.photomodeler.com
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Fig. 3. Example of convergence of the Monte Carlo integration estimate of the
shielding factor (for the sample location shown in Fig. 2) as the sample size increases.
Typically the shielding factor converges on a stable value after w500 iterations.
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within an object. In reality, this should always the case for an
exposure-dating application because the sample collected for
analysis has some thickness greater than zero, and the pro-
duction rate calculation applies to the shape of the object before
the sample was removed. Thus, the center of the sample where
one wishes to compute the production rate is, by definition,
inside an object. In the simplest case where the shape model
contains a single convex object, then any cosmic ray can only
intersect one facet, where it enters the object on its way to the
sample location. In a more complicated case including a single
non-convex object or many objects, then the ray can enter or
exit many different objects, or the same object multiple times,
intersecting 2n þ 1 facets where n is the number of additional
objects intersected (or the number of crossings of one complex
object). Thus, one can determine which sections of the ray path
lie within rock by sorting the intersection points according to
distance from the sample location and assuming that the
pathlength between the sample and the closest intersection is
rock, the pathlength between the closest and second-closest
intersections is air, the pathlength between the second-closest
and third-closest intersections is rock, and so on. See Fig. 2.
Note that this algorithm assumes that all objects are closed
shapes, which implies that there will always be an odd number
of intersections. An even number of intersections could only
arise from a topological error in defining the objects in the shape
model. However, in practice it might be potentially useful to
define some non-closed shapes in a shape model to represent
objects that are large enough to fully stop the cosmic-ray flux,
e.g., cliff faces or hillsides. To accommodate this, the code pro-
vides an option to assume that an even number of intersections
signals total attenuation of a particular cosmic ray.

In applying this method to exposure dating of precariously
balanced rocks in Balco et al. (2011), we also allowed for the possi-
bility that objects were embedded in soilwhose surface lay above the
sample site. This can be accounted for by computing the intersection
between the cosmic ray and a horizontal soil surface, disregarding all
cosmic ray-facet intersections that lie below the soil surface, and
applying the algorithm in (3) above to the intersection with the soil
surface and any remaining ray-facet intersections.
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Fig. 4. Validation of Monte Carlo integration code against analytical formulae of Lal
and Chen (2005) for geometric shielding factors inside a hemispherical boulder with
radius 1.5 m. The solid and dashed lines are analytical results for samples along
vertically-oriented and horizontally-oriented, respectively, radii, and in part reproduce
Figure 4 of Lal and Chen (2005). The circles show shielding factors at the same loca-
tions calculated by the Monte Carlo integration with N ¼ 1000. MATLAB code to
generate this figure is included in the supplemental information.
3.3. Monte Carlo integration

The algorithm described above applied to a shapemodel enables
one to compute r(x,y,z,q,f). This permits numerical integration of
Equation (4) by Monte Carlo integration. Monte Carlo integration is
a method of estimating the integral of a function over some region
by generating a uniformly distributed random sample of points
within the region and computing the value of the function at those
points. In general, given a function of two variables x and y to be
integrated over a region 0 � x � a and 0 � y � b,

IMC ¼ ab
N

XN
i¼1

f ðxi; yiÞx
Zb

0

Za

0

f ðx; yÞdx dy (6)

where IMC is the Monte Carlo estimate of the integral, N is the
number of points in the sample, and the sample points are uni-
formly distributed in x and y and have coordinates (xi,yi). Thus, the
Monte Carlo estimate for the geometric shielding factor F/Fref for a
sample with coordinates (x,y,z) is:

�
2p

mþ 1

��1p2

N

XN
i¼1

cosmðqiÞsinðqiÞe�
rrðx;y;z;qi ;fiÞ

Lp (7)

for N sample points (qi,fi) that are uniformly distributed in f and q.
The number of sample points needed for an accurate Monte
Carlo estimate of the geometric shielding factor depends on the
geometry. There exist formal methods of estimating the uncer-
tainty in a Monte Carlo integral based on the convergence of the
results, but they are not included in the present code. Note that
because this calculation includes systematic uncertainties that
stem from the simplifying assumptions discussed above, the formal
uncertainty of the Monte Carlo estimate is not expected to accu-
rately represent the true uncertainty in the shielding factor. One
can informally estimate the required sample size by successively
increasing the number of sample points and determining when the
resulting shielding factor converges on a stable and reproducible
value. Fig. 3 shows an example. In the application to precariously
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balanced rocks, we found that N x 500 was nearly always
sufficient.

3.4. Validation against analytical results

I attempted to validate this code by comparing it to analytical
formulae, computed by other authors, for the integral in Equation
(4) applied to simple geometries. First, Lal and Chen (2005) derived
formulae for computing the geometric shielding factor at points
within spherical boulders. In this situation, the cosmic-ray flux is
partially attenuated by passing through the boulder itself. Fig. 4
shows that the Monte Carlo integration yields the same results as
their formulae. Second, Dunne et al. (1999) derived formulae for
computing shielding due to complete obstruction of portions of the
upper hemisphere. This case differs from the ones considered by Lal
and Chen (2005) and Balco et al. (2011) because it does not involve
partial attenuation of the cosmic-ray flux from certain directions,
only total obstruction. However, the results of Dunne and others are
a useful test of this code because they describe not only a shielding
factor at the surface due to an obstructed horizon, but also the ef-
fect that the cosmic-ray flux is more vertically collimated when the
horizon is obstructed thanwhen it is not, so the depth-dependence
of the production rate varies between these cases. The Monte Carlo
integration can be used to simulate this effect, and Fig. 5 shows that
it correctly reproduces the Dunne et al. results.

3.5. Validation against measurements

In principle, one could validate shielding factors estimated with
this code by comparing them to measured cosmogenic-nuclide
concentrations in natural samples. This would require i) an
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Fig. 5. Validation of Monte Carlo integration against calculations by Dunne et al.
(1999) of production rates on and beneath a flat surface obstructed by a thick
obstacle spanning an azimuth of 180�and horizon angle of 50� . The obstructed horizon
both reduces the production rate at the surface relative to that for an unshielded
surface (by a factor of 0.79 in this example) and also causes the cosmic-ray flux at the
site to be more vertically collimated, which increases the apparent attenuation length
for subsurface production. The dark line shows shielding factors (the production rate
relative to the production rate on an unshielded flat surface at the same location)
predicted by Dunne et al. (1999) for this horizon geometry, and the circles show
equivalent shielding factors predicted by the Monte Carlo integration with N ¼ 2000.
The dashed line shows an exponential depth dependence with the shorter attenuation
length expected for an unshielded surface (here 160 g cm�2) to highlight the fact that
the Monte Carlo results correctly reproduce the attenuation length prediction of
Dunne et al. MATLAB code to generate this figure is included in the supplemental
information.
irregularly shaped object with meter-scale dimensions that was
emplaced with zero concentration of cosmic-ray-produced nu-
clides and subsequently exposed to the cosmic-ray fluxwithout any
change in its geometry, ii) a shape model of the object, and iii)
measurements of nuclide concentrations from multiple locations
on that object that have different degrees of geometric shielding. In
this case the cosmogenic-nuclide concentrations will be directly
proportional to the true shielding factors, allowing straightforward
validation of shielding factor estimates. These conditions could be
satisfied, for example, by sampling several locations on and/or
within a glacially transported moraine boulder. However, because
nearly all exposure-dating studies seek to avoid complicated geo-
metric shielding calculations by sampling only from the top of
boulders or outcrops, I am not aware of any such data set.

Studies of precariously balanced rocks in Balco et al. (2011) and
other more recent research (e.g., Rood et al., 2012) collected data
that meets some, but not all, of these requirements. These data
include photogrammetric shape models of irregularly shaped rocks
with meter-scale dimensions, and multiple 10Be measurements at
different locations on these rocks. However, it is not straightfor-
ward to use these data to evaluate the accuracy of shielding factor
calculations because the rocks were exhumed by downwasting of
regolith (and the exhumation history is not known independently
of the 10Be measurements), so all the samples did not have the
same exposure history, and the shielding geometry changed
through time. However, these studies were able to closely match
measured 10Be concentrations with a model for 10Be production
during rock exhumation that was based on shielding factors
computed using the Monte Carlo integration code described here.
Fig. 6 shows an example from Rood et al. (2012). Calculated
shielding factors for samples from this rock vary by a factor of four
(from 0.2 to 0.8), and, as shown in Fig. 6, variations in measured
10Be concentrations have similar pattern and magnitude. Thus, an
exhumation history could be found (using the method of Balco
et al., 2011) that was consistent with geomorphic constraints,
10Be concentrations, and shielding factor estimates. Because the
forward model includes additional assumptions besides the
shielding factor estimates, this comparison does not directly vali-
date the shielding factor estimates. However, given the large vari-
ation in shielding factor among these samples, it would be difficult
to match measured nuclide concentrations if the shielding factor
estimates were highly inaccurate. Again, a better approach to this
would be to make similar measurements on a boulder with a
simple exposure history. This would be a valuable future
contribution.

4. Example uses

The general purpose of the Monte Carlo integration code is to
permit exposure-dating of samples that are surrounded by meter-
scale surface obstructions. In many common exposure-dating sit-
uations, for example exposure-dating of glacially transported
boulders, complex shielding calculations of this sort are, of course,
mostly not necessary because it is easier to select unshielded
sample sites. The reason this codewas developed for reconstructing
exhumation histories of precariously balanced rocks useful in
seismic hazard analysis is because sampling only unshielded parts
of these features did not provide enough information to determine
when they were formed. The fact that the shielding geometry
changes as the rocks are exhumed required a relatively simple and
quick method of estimating not only present geometric shielding
factors but also changes in the shielding factor over time. Fig. 7
shows an example calculation for this application, and MATLAB
code to generate these results is included in the supplemental
material.
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Fig. 6. The right-hand panel shows a shape model for a precariously balanced rock near Lake Los Angeles, CA, described by Rood et al. (2012). Black circles show sample locations.
The center panel shows geometric shielding factors calculated by Monte Carlo integration for these samples. The left panel shows cosmogenic 10Be concentrations measured by
Rood et al. (2012) in these samples (black circles) as well as 10Be concentrations predicted by a forward model based on these shielding factors and a best-fitting exhumation history
(using the method of Balco et al., 2011) (open circles).
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Other obvious applications include estimating erosion rates
where soil erosion leads to progressive exposure of rock features
such as tors (e.g., Heimsath et al., 2000), or to estimate when fea-
tures like arches or sea stacks were formed by cliff retreat. More
complex applications would include attempting to determine the
frequency of boulder transport by comparing measured
cosmogenic-nuclide concentrations to present shielding geome-
tries (Mackey and Lamb, 2013); or, potentially, archeological
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Fig. 7. Example calculation showing the variation in shielding factor for the sample
shown in Fig. 2 with increasing thickness of regolith above the sample location. This
reproduces the calculation of Balco et al. (2011) (also note correction in Balco et al.,
2012). The black circles are the results of the Monte Carlo integration with
N ¼ 1000. The solid line shows an exponential function fit to the Monte Carlo results;
this fitting procedure is used to derive the sample-specific constants S0,i and Li in Ta-
ble 1 of Balco et al. (2011). The dashed line shows the variation in spallogenic pro-
duction rate with depth below the surface expected for an infinite flat surface
(exponentially decreasing with an attenuation length of 160 g cm�2). The top of the
precariously balanced rock is 169 cm above the sample, so when the sample is covered
by 169 cm of regolith, the PBR no longer protrudes above the surface and the sample
experiences the same shielding that it would ordinarily experience below a flat surface.
MATLAB code to generate this figure is included in the supplemental information.
applications aimed at verifying that sculpture or stonework has
resided in its present geometric configuration since constructed.
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dx.doi.org/10.1016/j.quageo.2013.12.002.

References

Balco, G., Purvance, M., Rood, D., 2011. Exposure dating of precariously balanced
rocks. Quat. Geochronol. 6, 295e303.

Balco, G., Purvance, M., Rood, D., 2012. Corrigendum to “Exposure dating of pre-
cariously balanced rocks” [Quaternary Geochronology 6 (2011) 295e303]. Quat.
Geochronol. 9, 86.

Balco, G., Schaefer, J., 2006. Cosmogenic-nuclide and varve chronologies for the
deglaciation of southern New England. Quat. Geochronol. 1, 15e28.

Balco, G., Stone, J., Lifton, N., Dunai, T., 2008. A complete and easily accessible means
of calculating surface exposure ages or erosion rates from 10Be and 26Al mea-
surements. Quat. Geochronol. 3, 174e195.

Dunai, T., 2010. Cosmogenic Nuclides: Principles, Concepts, and Applications in the
Earth Surface Sciences. Cambridge University Press, Cambridge, UK.

Dunne, J., Elmore, D., Muzikar, P., 1999. Scaling factors for the rates of production of
cosmogenic nuclides for geometric shielding and attenuation at depth on
sloped surfaces. Geomorphology 27, 3e12.

Goehring, B., Kurz, M., Balco, G., Schaefer, J., Licciardi, J., Lifton, N., 2010.
A reevaluation of in-situ cosmogenic He-3 production rates. Quat. Geochronol.
5, 410e418.

Gosse, J.C., Phillips, F.M., 2001. Terrestrial in situ cosmogenic nuclides: theory and
application. Quat. Sci. Rev. 20, 1475e1560.

Heimsath, A., Chappell, J., Dietrich, W., Nishiizumi, K., Finkel, R., 2000. Soil pro-
duction on a retreating escarpment in southeastern Australia. Geology 28 (9),
787e790.

Kubik, P., Reuther, A., 2007. Attenuation of cosmogenic 10Be production in the first
20 cm below a rock surface. Nucl. Instrum. Methods Phys. Res. B 259, 616e624.

Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates
and erosion models. Earth Planet. Sci. Lett. 104, 424e439.

Lal, D., Chen, J., 2005. Cosmic ray labeling of erosion surfaces II: special cases of
exposure histories of boulders, soil, and beach terraces. Earth Planet. Sci. Lett.
236, 797e813.

http://dx.doi.org/10.1016/j.quageo.2013.12.002
http://dx.doi.org/10.1016/j.quageo.2013.12.002
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref1
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref1
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref1
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref2
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref2
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref2
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref2
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref3
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref3
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref3
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref4
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref4
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref4
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref4
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref4
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref4
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref5
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref5
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref6
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref6
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref6
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref6
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref7
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref7
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref7
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref7
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref8
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref8
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref8
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref9
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref9
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref9
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref9
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref10
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref10
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref10
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref10
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref11
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref11
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref11
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref12
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref12
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref12
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref12


G. Balco / Quaternary Geochronology 22 (2014) 175e182182
Mackey, B., Lamb, M., 2013. Deciphering boulder mobility and erosion from
cosmogenic nuclide exposure dating. J. Geophys. Res. Earth Surf. 118, 184e197.

Masarik, J., Beer, J., 1999. Simulation of particle fluxes and cosmogenic nuclide
production in Earth’s atmosphere. J. Geophys. Res. 104, 12099e12111.

Masarik, J., Wieler, R., 2003. Production rates of cosmogenic nuclides in boulders.
Earth Planet. Sci. Lett. 216, 201e208.
Plug, L., Gosse, J., McIntosh, J., Bigley, R., 2007. Attenuation of cosmic ray flux in
temperate forest. J. Geophys. Res. 112, F02022.

Rood, D., Anooshehpoor, R., Balco, G., Biasi, G., Brune, J., Brune, R., Grant Ludwig, L.,
Kendrick, K., Purvance, M., Saleeby, I., 2012. Testing seismic hazard models with
Be-10 exposure ages for precariously balanced rocks. In: American Geophysical
Union 2012 Fall Meeting, San Francisco, CA. Abstract 1493571.

http://refhub.elsevier.com/S1871-1014(13)00117-9/sref13
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref13
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref13
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref14
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref14
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref14
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref15
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref15
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref15
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref16
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref16
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref17
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref17
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref17
http://refhub.elsevier.com/S1871-1014(13)00117-9/sref17

	Simple computer code for estimating cosmic-ray shielding by oddly shaped objects
	1 Importance of geometric shielding of the cosmic-ray flux to exposure dating
	2 Definition of geometric shielding; previous work
	3 Description of computer code
	3.1 Shape models
	3.2 Path length calculation
	3.3 Monte Carlo integration
	3.4 Validation against analytical results
	3.5 Validation against measurements

	4 Example uses
	Acknowledgments
	Appendix A Supplementary material
	References


