Cosmogenic “'Ne production systematics inferred from a 25-meter sandstone core
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Summary. We measured cosmic-ray-produced *'Ne Notable observations: Nucleogenic *Ne and Ne thermochronometry. A significant Muon-produced *'Ne. These data require significant
in quartz in a 25-meter sandstone core from an fraction of > Ne in these samples is the result of U and Th decay and production of *'Ne by muon interactions. Fitting a muon
extremely low erosion rate site at high elevation in the reaction 180(o,n)?'Ne. Fitting a production model to these data production model to these data implies that most of this
the Transantarctic Mountains. Fitting a *'Ne requires parameterizing this part of the ' Ne inventory as a function production is by fast muon interactions, and negative
production model to these data yields information of the duration of nucleogenic Ne accumulation. Thus, the best-fit muon capture is relatively unimportant. Existing
about *!Ne production systematics. value of this parameter yields an Ne closure age. These rocks cooled estimates of muon interaction cross-sections do a decent
through the Ne closure temperature (~90°C) at approx. 160 Ma. job of fitting the data.
What and why? Results: total “cosmogenic” *'Ne, [U], [Th] Data fitting and what we can learn from these data
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The point is to use the depth-dependence of cosmogenic 21Ne concentrations 5 0 S o Asp 142.3 g cm
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to determine the relative importance of various 21Ne production mechanisms. § SR o Neoliodb : 0
We do this by fitting a production model to the data. 40 | o 1 oo o egligible negative muon capture (f =0)
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Nucleogenic 21Ne. This is derived from the reaction 180(a,n)21Ne. o RS o ol 5
Nucleogenic 21Ne production depends on the U and Th concentrations R o 30+
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(which we have measured) and the duration of time the samples have resided Q e OO0 | % T
?elow the Ne closure tempe'mture (approx. 90° C). So the nucleogenic 21Ne 150} O R N Model [21Ne] § . ﬂ %
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Spallogenic 21Ne. The spallogenic 21Ne inventory can be specified by the \;9 5 RIS PN B - Fast muons 5 -10 + o
surface 21Ne production rate (which we can estimate from independent g 250¢ 1T Total g 20| >
calibration studies), the surface erosion rate, and an effective attenuation ~ All plots: B o & ol
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an exposure time is not required. We can’t estimate both the erosion rate and o . . B S . . .
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Muon-produced 21Ne. We can compute the muon flux and energy 450 | | R el Me;szlmzdl Ne less
distribution at our sample depths from the scheme of Heisinger and others, S Upper core (linear x) o @ O M © moae: nucleogentc Other questions we might reasonably ask:
leaving three parameters that are necessary to specify the inventory of 500 ' ' ' ' ' ' ' ' ' e R A . , , , , ,
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site is such that the time required to attain production-erosion steady state for Entire core (log x) el 117 ° St © inikegration time formuow production 10\bed free parameter.
muon-produced 21Ne is well in excess of the geological constraints on the Ne ° O —e 80" > _ ,
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Summary. A forward model for these data requires seven parameters: Ne 1000 - - -0 1 0 OOO‘ ° ; Results: Erosi 36 2
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Ma (since which the topography has been essentially static). S the integration time, but that would violate geologic constraints.
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alpha particle implantation. Differences in U and Th concentrations between = SRR B How accurately have we constrained muon interaction
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Both labs - CRPG and BGC - analysed (multiple) separate aliquots of five IR N Ma), we can’.t uniquely dete'ri'nine T
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