Corrigendum to “Exposure dating of precariously balanced rocks” [Quaternary Geochronology 6 (2011) 295–303]

Greg Balco a,*,1, Matthew D. Purvance b,c,1, Dylan H. Rood d,e,1

a Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA
b Seismological Laboratory, University of Nevada-Reno, Reno, NV 89557, USA
c Itasca Consulting Group, Minneapolis, MN 55401, USA
d Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
e Earth Research Institute, University of California, Santa Barbara, CA 93106, USA

Article history:
Received 6 February 2012
Accepted 7 February 2012
Available online xxx

DOI of original article: 10.1016/j.quageo.2011.03.007.
* Corresponding author. Tel.: +1 510 644 9200; fax: +1 510 644 9201.
E-mail address: balco@bgc.org (G. Balco).
1 Authors contributed equally.

We discovered an error in the computer code that carries out the geometric shielding calculations in this paper. The error concerned the summation of attenuation distances when a simulated cosmic ray path passed through multiple domains of soil or rock. This resulted in incorrect estimates of the parameters $S_{0,i}$ and L_i for some samples in Table 1. These incorrect estimates were also displayed in Fig. 6. Revised versions of Table 1 and Fig. 6 appear below. This revision has a small effect on our estimate of the fragility age t_{tip} for the “GV2” precariously balanced rock (18.7 ± 2.8 ka as originally published). The corrected values for $S_{0,i}$ and L_i shown above slightly improve the value of the misfit statistic M (to 32 from 42 as originally published) and yield $t_{tip} = 18.5 \pm 2.0$ ka.

Table 1

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Distance below PBR top (zi cm)</th>
<th>Sample thickness (cm)</th>
<th>10Be a (103 atoms g$^{-1}$)</th>
<th>$S_{0,i}$ (g cm$^{-2}$)</th>
<th>L_i (cm a$^{-1}$)</th>
<th>Assumed $\varepsilon_{s,i}$ (cm a$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV2-3</td>
<td>0</td>
<td>4.5</td>
<td>688 ± 16</td>
<td>0.96</td>
<td>160</td>
<td>2 × 10$^{-4}$</td>
</tr>
<tr>
<td>GV2-2</td>
<td>69</td>
<td>4</td>
<td>410.3 ± 6.7</td>
<td>0.90</td>
<td>171</td>
<td>0</td>
</tr>
<tr>
<td>GV2-4</td>
<td>117</td>
<td>3.5</td>
<td>207.6 ± 4.4</td>
<td>0.60</td>
<td>225</td>
<td>0</td>
</tr>
<tr>
<td>GV2-1</td>
<td>169</td>
<td>5</td>
<td>163.3 ± 3.8</td>
<td>0.50</td>
<td>223</td>
<td>0</td>
</tr>
</tbody>
</table>

a Normalized to the isotope ratio standards of Nishiizumi et al. (2007).

Fig. 6. Exponential fits to numerical calculations of the shielding factor for samples below the PBR top as a function of soil depth above the sample location. The symbols are the results of the Monte Carlo integration; the lines are given by Equation (6) with the parameters from Table 1.