Sample name	Aliquot	Aliquot weight (g)	Heating temperature (deg C)	Heating time (hr)	Heating system (F/L) ¹	Total ²⁰ Ne released ² (10 ⁹ atoms)	Total ²¹ Ne released ³ (10 ⁶ atoms)	²¹ Ne / ²⁰ Ne ⁴ (10 ⁻³)	²² Ne / ²⁰ Ne ⁴ (10 ⁻³)	Cosmogenic ²¹ Ne ⁵ This heating step (10 ⁶ atoms g ⁻¹)	Cosmogenic ²¹ Ne as % of ²¹ Ne released in this heating step	Percent of total cosmogenic ²¹ Ne released in this step	Total cosmogenic ²¹ Ne (10 ⁶ atoms g ⁻¹)
05-EG-118-BR	d	0.1506	400 700 1100	0.3 0.3	L L	0.863 ± 0.018 1.093 ± 0.023 0.195 ± 0.012	17.71 ± 0.74 7.76 \pm 0.36 1.08 + 0.11	20.65 ± 0.71 7.16 ± 0.29 5.60 ± 0.65	119.8 ± 3.1 111.6 ± 2.7 108.6 ± 9.1	101.8 ± 4.6 30.6 ± 2.2 3.38 ± 0.78	87 59 47	75 23 2	135.8 ± 5.2
	e	0.1451	400 700 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15.50 ± 0.50 9.17 ± 0.34 0.87 ± 0.14	$20.78 \pm 0.65 \\ 7.71 \pm 0.22 \\ 3.90 \pm 0.68$	128.7 ± 4.9 108.5 ± 2.7 98.0 ± 12.3	92.1 ± 3.5 39.0 ± 2.0 1.5 ± 1.0	86 62 24	69 29 1	132.5 ± 4.1
05-EG-119-BR	g	0.0574	700 1100	0.3 0.3	L L	0.771 ± 0.016 0.101 ± 0.012	6.87 ± 0.34 0.65 ± 0.10	8.88 ± 0.33 6.38 ± 1.23	111.5 ± 2.6 114.9 ± 19.9	79.8 ± 4.8 6.1 ± 1.9	67 54	93 7	85.8 ± 5.1
	h	0.0495	700 1100	0.3 0.3	L L	0.578 ± 0.013 0.094 ± 0.017	5.46 ± 0.28 0.09 ± 0.12	9.42 ± 0.39 0.91 ± 1.30	118.0 ± 3.7 113.5 ± 25.4	75.7 ± 4.9	69	100	75.7 ± 4.9
	I	0.1408	400 750 1100	0.3 0.3 0.3	L L L	0.622 ± 0.019 1.122 ± 0.027 0.166 ± 0.016	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 16.01 & \pm & 0.66 \\ 5.23 & \pm & 0.17 \\ 2.56 & \pm & 0.77 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	58.4 ± 2.9 18.2 ± 1.4 	82 43	76 24	76.5 ± 3.2
04-AV-001-BR	d	0.1289	400 700 100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8.59 ± 0.40 10.20 ± 0.41 0.97 ± 0.11	5.76 ± 0.17 3.27 ± 0.07 2.94 ± 0.34	103.9 ± 1.5 101.6 ± 1.0 113.9 ± 5.5	32.1 ± 2.0 7.5 ± 1.7 	48 9	81 19	39.6 ± 2.7
	е	0.1382	400 750 1100	0.3 0.3 0.2	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	106.2 ± 2.4 104.2 ± 1.3 109.7 ± 5.3	29.9 ± 2.3 5.0 ± 2.2 	48 6	86 14	34.9 ± 3.2
	f	0.1294	400 750 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	38.1 ± 5.3 4.0 ± 2.8	45 5	91 9	42.1 ± 6.0
04-AV-005-BR	h	0.1476	400 700 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	171.3 ± 5.7 111.3 ± 3.7 124.2 ± 22.6	170.1 ± 5.3 10.4 ± 1.2 0.99 ± 0.68	95 46 36	94 6 1	181.5 ± 5.4
	I	0.0519	400 700 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrr} 44.57 & \pm & 2.68 \\ 7.00 & \pm & 0.72 \\ 4.91 & \pm & 3.71 \end{array}$	169.7 ± 11.5 127.2 ± 10.9 116.2 ± 54.9	157.2 ± 6 15.8 ± 2.4 	94 58	91 9	172.9 ± 6.8
	i	0.0252	400 700 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4.45 ± 0.21 0.48 ± 0.10 -0.29 ± 0.09	38.20 ± 4.17 5.97 ± 1.40 -17.64 ± 12.33	155.5 ± 20.0 141.0 ± 23.8 178.6 ± 138.1	163.6 ± 8.5 9.6 ± 4.1 	93 50	94 6	173.2 ± 9.4
	g	0.0491	1100 1100	0.33 0.33	L L	0.372 ± 0.018 0.012 ± 0.009	9.32 ± 0.37 0.19 ± 0.08	24.61 ± 1.30 15.71 ± 13.92	126.9 ± 6.9 266.9 ± 227.7	168.1 ± 7.6 3.2 ± 1.8	89 82	98 2	171.3 ± 7.9
04-AV-006-BR	е	0.1293	400 700 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	147.0 ± 7.7 107.0 ± 3.8 344.0 ± 177.4	91.1 ± 4.2 10.4 ± 1.3 	92 78	90 10	101.4 ± 4.4
	Fa	0.2527	1100 1500	0.4 0.2	F F	$\begin{array}{rrrr} 1.864 & \pm & 0.039 \\ 0.027 & \pm & 0.014 \end{array}$	29.33 ± 1.19 0.48 ± 0.13	15.18 ± 0.29 17.57 ± 10.38	115.6 ± 1.7 30.9 ± 48.2	90.5 ± 2.9 1.60 ± 0.54	78 84	98 2	92.1 ± 2.9
	f	0.1393	400 750 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	23.19 ± 0.94 3.82 ± 0.24 -3.41 ± 2.51	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	84.3 ± 4.0 5.1 ± 1.4 	88 23	94 6	89.4 ± 4.2

Supplementary data for Balco and Shuster, "Production rate of cosmogenic ²¹Ne in quartz estimated from ¹⁰Be, ²⁶AI, and ²¹Ne concentrations in slowly eroding Antarctic bedrock surfaces." Table S1: Ne measurements.

Table S1, continued.

04-AV-010-BR	d	0.1424	400 700 1100	0.3 0.3 0.3	L L L	0.614 ± 0.011 1.591 ± 0.021 0.177 ± 0.010	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	119.1 ± 3.6 106.3 ± 1.9 109.1 ± 10.1	53.0 ± 2.2 41.9 ± 2.0 4.13 ± 0.89	80 55 53	54 42 4	99.0 ± 3.1
	е	0.1327	400 700 1100	0.3 0.3 0.3	L L L	0.578 ± 0.016 1.725 ± 0.020 0.183 ± 0.010	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrr} 14.87 & \pm & 0.62 \\ 6.00 & \pm & 0.12 \\ 4.56 & \pm & 0.68 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	81 50 36	56 42 2	94.9 ± 3.3
	Fa	0.2894	300 600 1100 1500	0.3 0.3 0.2	F F F	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	81 59 36	46 49 5	92.8 ± 2.5
	е	0.1412	400 750 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	75 53 37	60 38 2	93.8 ± 3.5
04-AV-018-BR	f	0.1505	400 700 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	116.8 ± 1.9 109.1 ± 2.2 126.5 ± 7.7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	82 64 46	67 30 3	165.1 ± 4.3
	Fa	0.2632	500 1100 1500	0.3 0.3 0.2	F F F	2.054 ± 0.044 2.751 ± 0.065 -0.051 ± 0.021	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	129.1 ± 4.7 42.7 ± 1.9 	82 56	75 25	171.8 ± 5.1
	g	0.1326	400 750 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrr} 14.88 & \pm & 0.50 \\ 7.58 & \pm & 0.20 \\ 7.46 & \pm & 1.31 \end{array}$	118.1 ± 3.5 109.4 ± 1.7 93.3 ± 19.4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	80 61 61	63 35 3	169.9 ± 5.7
05-EG-137-BR	f	0.1377	400 700 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	88.93 ± 2.31 9.50 ± 0.32 4.80 ± 0.95	209.5 ± 5.3 114.0 ± 3.1 107.3 ± 17.8	343.4 ± 11.6 40 ± 2.1 1.63 ± 0.76	97 70 38	89 10 0.4	384.9 ± 11.8
	Fa	0.2203	1100 1500	0.5 0.2	F F	2.384 ± 0.058 -0.013 ± 0.018	86.03 ± 3.23 0.35 ± 0.09	35.01 ± 0.40 -26.43 ± 37.06	137.1 ± 1.9 43.3 ± 98.0	348.1 ± 9.4 	89	100	348.1 ± 9.4
	g	0.1380	400 750 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	198.0 ± 6.2 104.2 ± 3.3 150.9 ± 71.2	337.5 ± 11.3 29.3 ± 1.9 1.08 ± 0.9	97 59 56	92 8 0.3	367.9 ± 11.5
05-EG-140-BR	d	0.1315	400 700 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	36.69 ± 1.16 8.42 ± 0.39 0.64 ± 0.10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	178.5 ± 5.9 103.4 ± 1.7 109.1 ± 23.9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	96 61 54	87 13 0.8	308.9 ± 9.2
	Fa	0.1980	500 1100 1500	0.3 0.3 0.2	F F F	1.739 ± 0.029 0.503 ± 0.016 -0.026 ± 0.017	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	35.54 ± 0.61 5.27 ± 0.30 -4.27 ± 4.94	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	287.1 ± 7.2 5.90 ± 0.79 	89 43	98 2	293.0 ± 7.2
	e	0.1246	400 750 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	251.3 ± 9.2 46.4 ± 2.5 1.74 ± 0.97	95 63 45	84 16 0.6	299.5 ± 9.6

Table S1, continued.

CRONUS-A	а	0.0558	1100 1100	0.33 0.3	L L	1.269 ± 0.021 0.028 ± 0.012	22.99 ± 0.74 0.17 ± 0.09	17.76 ± 0.33 5.82 ± 3.89	113.4 ± 2.7 61.4 ± 53.1	337.7 ± 9.4	82	100	337.7 ± 9.4
	b	0.0692	1100 1100	0.3 0.33	L L	1.028 ± 0.020 0.019 ± 0.008	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	24.51 ± 0.60 1.50 ± 4.38	125.6 ± 2.9 104.2 ± 86.4	321.4 ± 10.9	87	100	321.4 ± 10.9
	с	0.1084	700 1100	0.3 0.3	L L	1.246 ± 0.022 0.180 ± 0.013	40.29 ± 1.51 1.38 ± 0.12	32.32 ± 0.54 7.62 ± 0.82	137.6 ± 2.2 108.3 ± 10.8	338.8 ± 8.7 7.8 ± 1.2	91 61	98 2	346.5 ± 8.8
	d	0.1522	700 1100	0.3 0.3	L L	1.828 ± 0.044 0.193 ± 0.015	53.65 ± 2.26 2.16 ± 0.14	29.31 ± 0.34 11.20 ± 1.08	127.9 ± 1.2 110.5 ± 11.1	317.8 ± 8.7 10.49 ± 0.99	90 74	97 3	328.3 ± 8.8
	e	0.1416	400 700 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	33.62 ± 1.23 18.89 ± 0.70 1.35 ± 0.14	65.98 ± 1.97 14.52 ± 0.27 17.24 ± 3.16	167.2 ± 5.5 118.7 ± 2.2 219.6 ± 38.5	227.9 ± 8.8 104.9 ± 2.8 7.98 ± 0.99	96 79 83	67 31 2	340.8 ± 9.2
	Fb	0.2654	400 750 1100 1500	0.3 0.3 0.3 0.2	F F F	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	98 84 72 81	37 60 2 0.7	333.0 ± 5.2
	Fc	0.3239	1100 1500	0.5 0.2	F F	4.558 ± 0.099 0.023 ± 0.018	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	25.72 ± 0.40 23.32 ± 18.77	130.7 ± 1.5 176.6 ± 144.2	321.5 ± 9.0 1.49 ± 0.37	86 88	99.5 0.5	322.9 ± 9.0
	f	0.1350	1100	0.4	L	2.751 ± 0.048	52.82 ± 1.66	19.08 ± 0.40	122.6 ± 1.8	329.6 ± 9.9	84	100	329.6 ± 9.9
	g	0.1385	400 750 1100	0.3 0.3 0.3	L L L	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	31.90 ± 1.03 18.30 ± 0.70 0.77 ± 0.14	46.65 ± 1.16 14.57 ± 0.38 13.91 ± 11.92	151.0 ± 5.2 119.3 ± 2.7 171.6 ± 147.9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	94 79 79	66 32 1	325.7 ± 8.5

Notes:

¹ L, 75W diode laser; F, resistance furnace

² Computed by comparison to ²⁰Ne signal in air pipettes. 1-sigma uncertainty includes measurement uncertainty of ²⁰Ne signal in this analysis and the reproducibility of the air pipette signal (0.8%)

³ Computed by comparison to ²¹Ne signal in air pipettes. 1-sigma uncertainty includes measurement uncertainty of ²¹Ne signal in this analysis and the reproducibility of the air pipette signal (2%)

⁴ Isotope ratio measured internally during each analysis: does not involve normalization to the Ne isotope signals in the air pipettes.

⁵ Analyses where cosmogenic ²¹Ne was not distinguishable from zero at 1 sigma are not shown. Cosmogenic ²¹Ne concentrations were calculated by normalization to either the ²⁰Ne or ²¹Ne signal in the air pipettes, depending on which method yielded better precision.