Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: Implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering

Miquela Ingalls1, David Rowley1, Gerard Olack1, Brian Currie2, Shanying Li2, Jennifer Schmidt1, Marissa Tremblay1, Pratigya Polissar4, David L. Shuster1,5, Ding Lin7, and Albert Colman1
1Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois 60637, USA
2Department of Geology & Environmental Earth Science, Miami University, Oxford, Ohio 45055, USA
3Department of Earth & Environmental Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
4Department of Earth & Planetary Science, University of California, Berkeley, California 94720, USA
5Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, California 94709, USA
6Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, New York 10964, USA
7Institute for Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, People’s Republic of China

ABSTRACT

The elevation history of the Tibetan Plateau promises insight into the mechanisms and dynamics that develop and sustain high topography over tens of millions of years. We present the first nearly continuous Cenozoic elevation history from two sedimentary basins on the southern Tibetan Plateau within the latest Cretaceous to Eocene Gangdese arc. Oxygen-isotope and \(\Delta_{47} \) clumped-isotope compositions of nonmarine carbonates allow us to constrain carbonate formation temperature and reconstruct the paleoprecipitation record of the Eocene to Pliocene Oiyug Basin and Paleocene to Eocene Penbo Basin. We exploit the systematic decrease of surface temperature and meteoric water \(\delta^{18}O \) values with elevation to derive paleoelevation estimates for these basins. Minimally altered and unaltered pedogenic and lacustrine carbonates from the Oiyug Basin yield \(\Delta_{47, \text{CDES}} \) (relative to the carbon dioxide equilibrium scale [CDES]) values of 0.625‰ to 0.755‰, which correspond to temperatures of 1–30 °C using a \(\Delta_{47} \) thermometer for low-temperature carbonates. Similarly, the Penbo Basin yielded \(\Delta_{47, \text{CDES}} \) values of 0.701‰ to 0.726‰, corresponding to temperatures of 6–12 °C. The apparent evidence for survival of primary clumped-isotope values in the face of substantial burial and heating is an important result for the field of carbonate clumped-isotope thermometry.

Our paleoelevation estimates for the Eocene to Pliocene Oiyug Basin (~6.5–4.1 km) support previous evidence that high elevations were attained in southern Tibet by at least ca. 30 Ma. Stable-isotope results allow for the possibility of significant topographic subsidence during the Miocene as a result of regional extension. In the Penbo Basin, our paleoelevation estimates for the Paleocene to Eocene Nianbo Formation (4.4 ±1.3/–1.7 km) and Eocene Pana Formation (4.1 ±1.2/–1.6 km) extend the altitude record of the southern Tibetan Plateau to pre–India-Asia collision. These results support the “Lhasaplano” model of an Andean-type continental margin tectonic system.

The rise of the Himalayas and Tibet is often invoked to understand isotopic proxies for global chemical weathering in the Cenozoic and has constrained the debate on the nature of \(\text{CO}_2 \)-climate–weathering feedbacks. The nature of the Tibetan paleoelevations from pre- to postcollision, as presented here, indicates that high relief at low latitude prevailed on the Asian margin much earlier than previously thought. Thus, high topography alone at low latitude is not sufficient to account for the Cenozoic weathering proxy record.

INTRODUCTION

The debate over when and how the largest and highest plateau on Earth reached its current altitude is reframed here in the context of recent evidence for an older onset of India-Eurasia collision. This has important implications for tectonics (Le Pichon et al., 1992; Kapp et al., 2007), crustal mass balance considerations (Ingalls et al., 2016), and feedbacks among tectonics, weathering, climate, and the global carbon cycle (e.g., Raymo and Ruddiman, 1992).

Recent efforts have established an age of onset of the India-Eurasia continental collision of ca. 58 Ma from the Indian deep-water, offshelf passive continental margin environment represented by Eocene strata near Sangdanlin in south-central Tibet (DeCelles et al., 2014; Hu et al., 2015). Ingalls et al. (2016) used these and other data to suggest an age of ca. 56 ± 2 Ma for collision of thicker (>20 km) continental crust in the vicinity of Sangdanlin, a younger age of ca. 51 Ma in the Zanskar region farther west (Gaetani and Garzanti, 1991; Green et al., 2008), and an essentially unconstrained ca. 54 ± 4 Ma age nearer to the eastern syntaxis.

Our study of the tectonic history of Penbo and Oiyug Basins provides a framework for the land surface evolution of the southern margin of Eurasia and the sedimentary basins associated with the Linzizzong volcanic arc and younger sedimentary basins during the Cenozoic collisional history spanning ca. 55 Ma to ca. 5 Ma. We obtained \(\delta^{18}O \) measurements on lacustrine, pedogenic, and groundwater calcites from both basins. We used the clumped-isotope–derived mineral formation temperatures from a subset of the calcite samples to calculate the original oxygen isotopic composition of meteoric water.
range of the isotopic record in the Oiyug Basin nonmarine carbonates to extend the temporal validity new stable-isotope data from Paleogene massometry and environmental conditions. We pro-vide additional support that the Oiyug Basin was high throughout the Oligocene and provide additional support that the Oiyug Basin was high throughout the Oligocene to Pliocene, building on the work of Currie et al., 2016. These data thus help to remove bias in paleoelevation estimates through assum-ptions regarding carbonate-water fraction-ation temperatures.

The clumped-isotope paleothermometry and stable-isotope paleothermometry results presented here support the existence of an Andean-type continental arc on the southern margin of Eur-asia with elevations >4.1 km at the onset or just prior to the onset of the India and Eurasia col-lision in the Penbo-Linzhou region near Lhasa, Tibet. We also advance the elevation record of the Oiyug Basin, ~160 km west of Lhasa, into the Eocene and provide additional support that the Oiyug Basin was high throughout the Oligo-cene to Pliocene, building on the work of Cur-rie et al. (2016). Our high paleoelevations agree with aspects of the “Lhasaplanzo” model (Kapp et al., 2007), including a high-standing Lhasa terrane before India-Asia collision, and provide additional evidence against models invoking en masse (England and Houseman, 1986; Harrison et al., 1992, 1995; Molnar et al., 1993) or local plateau uplift (Wang et al., 2006) from signifi-cantly lower elevations in the Neogene.

Figure 1. Maps of the sampled regions. (A) Regional Landsat image of the Tibetan Plateau (adapted from Currie et al., 2016). (B) Geologic map of the Linzhou-Penbo region, including the Nianbo type section. Map is based on and geochronology is sourced from Ding et al. (2014) and He et al. (2007). (C) Geologic map of the Oiyug Basin displaying measured section locations from Currie et al. (2016; gray) and this study (blue). The fossil floral locality of Spicer et al. (2003) is depicted as a leaf.
High-elevation Lhasa block throughout the Cenozoic

dard mean ocean water [VSMOW]) as our low-elevation precipitation isotopic value (δ\(^{18}\)O\(_{\text{p}}\)) in the Miocene and older sediments and −4.6‰ ± 1.4‰ VSMOW to the Pliocene sediments to account for climate change during the Cenozoic. Error was propagated through the paleoelevation model using the sum in quadrature of the uncertainties associated with calculating mean δ\(^{18}\)O values for each sample, as well as the 2σ\(\Delta_{\text{t}}\) uncertainty.

Case for Multiple Proxies in Reconstructions of Ancient Topography and Environments

Carbonate stable-isotope paleoaltimetry depends critically on the preservation of a primary δ\(^{18}\)O signal in the variably altered rocks preserved in collisional zones. Primary carbonate isotopic compositions are prone to alteration and diagenetic resetting by deep burial (Leier et al., 2009), which can shift δ\(^{18}\)O to lower values, eliminating the possibility of constraining elevation history using the stable-isotope record (Garzione et al., 2004; Leier et al., 2009). Such a lowering of δ\(^{18}\)O would result in an incorrectly high paleoelevation interpretation (Garzione et al., 2004). We employed petrographic, vitrinite reflectance, thermochrometric analysis, and clumped-isotope thermometry to assess alteration and rule out the use of isotopic data from thermally mature samples in paleoelevation reconstructions.

The exploitation of multiple paleoelevation and paleoenvironmental proxies in a single stratigraphic package allows for calibration and checks among conventional archives. Currie et al. (2016) conducted such a study in the Oiyug Basin, characterizing ~30 m.y. of relative elevation stasis in the evolving depositional environment of the Oiyug Basin. Currie et al. (2016) synthesized multiple proxies for paleo–meteoric water (δ\(^{18}\)O\(_{\text{w}}\)\(_{\text{CaCO}_{3}}\), δ\(^{18}\)O\(_{\text{w}}\)\(_{\text{D leaf wax}}\), δ\(^{18}\)O\(_{\text{FeCO}_{3}}\)) to provide mid-Miocene (5.1 km +1.3/−1.9 km) and late Oligocene to mid-Miocene (4.1 km +1.2/−1.6 km) paleoelevation estimates of this region, offering a unique opportunity for testing the fidelity of other stable-isotope proxies. Khan et al. (2014) determined a mid-Miocene (ca. 15 Ma) paleoelevation of 5.54 ± 0.73 km by reevaluating paleo-enthalpy estimates for a fossil flora locality (Spicer et al., 2003) in the Oiyug Basin relative to new fossil flora localities in the Siwaliks, which they used as their sea-level proxy.

Clumped isotopes can be powerful in studying the evolution of ancient land surfaces when the original isotopic signature is preserved (Ghosh et al., 2006b; Quade et al., 2007). In this study, we applied calcite Δ\(_{\text{t}}\)\(_{\text{c}}\)-derived formation temperatures (\(T_{\Delta_{\text{t}}\text{c}}\); Table 3) to previously

1 GSA Data Repository item 2017300, an appendix, supplemental figures of ⁴⁰Ar/³⁶Ar data and evaporation trend in δ\(^{18}\)O BY mineralogy, and Δ\(_{\text{c}}\) data tables containing measurements of calcite standards. The appendix text outlines quality control tests and corrections performed on Δ\(_{\text{c}}\) measurements, and paleoaltimetry model parameters, is available at http://www.geosociety.org/daterepository/2017 or by request to editing@geosociety.org.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Location in section</th>
<th>(\delta^{13}C) (‰, VPDB)</th>
<th>(\delta^{18}O_{w}) (‰, VPMOW)</th>
<th>(\Delta \delta^{18}O_{c}) (‰)</th>
<th>Model elevation (km ± 2 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pana Formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>483C</td>
<td>Truncation</td>
<td>-7.6</td>
<td>-13.9</td>
<td>-14.7</td>
<td>-13.6</td>
</tr>
<tr>
<td>483A</td>
<td>Truncation</td>
<td>-7.2</td>
<td>-14.0</td>
<td>-14.9</td>
<td>-13.8</td>
</tr>
<tr>
<td>483D</td>
<td>Truncation</td>
<td>-6.3</td>
<td>-14.3</td>
<td>-15.2</td>
<td>-14.1</td>
</tr>
<tr>
<td>483B</td>
<td>Truncation</td>
<td>-7.5</td>
<td>-14.7</td>
<td>-15.5</td>
<td>-14.4</td>
</tr>
<tr>
<td>483A</td>
<td>Truncation</td>
<td>-7.3</td>
<td>-14.8</td>
<td>-15.6</td>
<td>-14.5</td>
</tr>
<tr>
<td>491B</td>
<td>Groundwater calcite nodule</td>
<td>-6.6</td>
<td>-13.1</td>
<td>-14.8</td>
<td>-14.4</td>
</tr>
<tr>
<td>491C</td>
<td>Groundwater calcite nodule</td>
<td>-5.8</td>
<td>-11.7</td>
<td>-13.4</td>
<td>-13.0</td>
</tr>
<tr>
<td>490A</td>
<td>Paleosol carbonate nodule</td>
<td>-7.6</td>
<td>-14.1</td>
<td>-15.8</td>
<td>-14.7</td>
</tr>
<tr>
<td>490B</td>
<td>Paleosol carbonate nodule</td>
<td>-7.2</td>
<td>-13.6</td>
<td>-15.2</td>
<td>-14.8</td>
</tr>
<tr>
<td>491A</td>
<td>Paleosol carbonate nodule</td>
<td>-6.1</td>
<td>-11.7</td>
<td>-13.4</td>
<td>-13.0</td>
</tr>
<tr>
<td>475A</td>
<td>Lacustrine limestone</td>
<td>-3.0</td>
<td>-13.7</td>
<td>-15.3</td>
<td>-14.5</td>
</tr>
<tr>
<td>475D</td>
<td>Lacustrine limestone</td>
<td>-3.8</td>
<td>-14.4</td>
<td>-15.2</td>
<td>-14.2</td>
</tr>
<tr>
<td>475A</td>
<td>Lacustrine limestone</td>
<td>-4.5</td>
<td>-15.4</td>
<td>-16.2</td>
<td>-15.1</td>
</tr>
<tr>
<td>475A</td>
<td>Lacustrine limestone</td>
<td>-5.1</td>
<td>-16.1</td>
<td>-16.9</td>
<td>-15.8</td>
</tr>
<tr>
<td>Nianbo Formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>446C</td>
<td>Lacustrine limestone</td>
<td>236</td>
<td>-2.7</td>
<td>-16.7</td>
<td>-17.5</td>
</tr>
<tr>
<td>446H</td>
<td>Lacustrine limestone</td>
<td>232</td>
<td>-2.2</td>
<td>-17.9</td>
<td>-18.0</td>
</tr>
<tr>
<td>446D</td>
<td>Paleosol carbonate nodule</td>
<td>234</td>
<td>-4.6</td>
<td>-17.3</td>
<td>-18.9</td>
</tr>
<tr>
<td>446F</td>
<td>Lacustrine limestone</td>
<td>232</td>
<td>-3.5</td>
<td>-16.1</td>
<td>-16.9</td>
</tr>
<tr>
<td>494E</td>
<td>Lacustrine limestone</td>
<td>232</td>
<td>-3.2</td>
<td>-17.2</td>
<td>-19.0</td>
</tr>
<tr>
<td>474A</td>
<td>Paleosol carbonate nodule</td>
<td>222</td>
<td>-3.8</td>
<td>-19.0</td>
<td>-20.7</td>
</tr>
<tr>
<td>484C</td>
<td>Lacustrine limestone</td>
<td>215</td>
<td>-3.8</td>
<td>-12.7</td>
<td>-13.5</td>
</tr>
<tr>
<td>484A</td>
<td>Lacustrine limestone</td>
<td>215</td>
<td>-3.9</td>
<td>-12.0</td>
<td>-13.4</td>
</tr>
<tr>
<td>484D</td>
<td>Lacustrine limestone</td>
<td>214</td>
<td>-4.8</td>
<td>-11.4</td>
<td>-12.2</td>
</tr>
<tr>
<td>484E</td>
<td>Lacustrine limestone</td>
<td>214</td>
<td>-4.0</td>
<td>-12.0</td>
<td>-12.8</td>
</tr>
<tr>
<td>484F</td>
<td>Lacustrine limestone</td>
<td>214</td>
<td>-3.5</td>
<td>-15.3</td>
<td>-16.2</td>
</tr>
</tbody>
</table>

Mean elevation (km): 4.1 ± 1.2/1.6

Note: The unique \(\tau(N) \) values from clumped-isotope samples (bold) were used to calculate the calcite-water fractionation for those samples. The average \(\tau(N) \) values for pedogenic and lacustrine clumped-isotope samples were used to calculate the appropriate calcite-water fractionation for the remaining samples, by sample type. VPDB—Vienna Pee Dee belemnite; VPMOW—Vienna standard mean ocean water.

Error estimates for mean elevations are reported as the quadrature of the model error for each elevation estimate.

Mean elevation (km): 4.4 ± 1.3/1.7
Table 2: Stable-Isotope Data for All Carbonates and Calculated Paleolevels of the Oyuwig Basin

<table>
<thead>
<tr>
<th>Sample</th>
<th>Carbonate Type</th>
<th>Location in Section (m)</th>
<th>δ18O (% VPDB)</th>
<th>δ13C (% VPDB)</th>
<th>δ18O (% VSMOW)</th>
<th>δ13C (% VSMOW)</th>
<th>Mean δ18O (‰ ± 2σ)</th>
<th>δ18O vs 2σ (%)</th>
<th>Mean elevation (km) ± 2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oyuwig Formation (Fm.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>621I</td>
<td>Calcite marl</td>
<td>1580</td>
<td>-2.0</td>
<td>-3.0</td>
<td>-3.0</td>
<td>-3.0</td>
<td>-1.5 ± 2σ</td>
<td>-25.5</td>
<td>6.5 ± 1.8/2.3</td>
</tr>
<tr>
<td>621H</td>
<td>Calcite marl</td>
<td>1584</td>
<td>-0.1</td>
<td>-2.7</td>
<td>-2.9</td>
<td>-3.0</td>
<td>-0.6 ± 1σ</td>
<td>-23.3</td>
<td>6.5 ± 1.8/2.3</td>
</tr>
<tr>
<td>621F</td>
<td>Siderite nodule</td>
<td>1575</td>
<td>-10.8</td>
<td>-13.1</td>
<td>-12.4</td>
<td>-14.0</td>
<td>-0.5 ± 1σ</td>
<td>-8.6</td>
<td>3.6 ± 1.1/1.4</td>
</tr>
<tr>
<td>Upper Gazhacun Fm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>618A</td>
<td>Siderite nodule</td>
<td>690</td>
<td>-17.1</td>
<td>-18.2</td>
<td>-19.1</td>
<td>-19.3</td>
<td>± 1.7%</td>
<td>-11.7</td>
<td>4.4 ± 1.3/1.8</td>
</tr>
<tr>
<td>Middle Gazhacun Fm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>Pedogenic calcite</td>
<td>670</td>
<td>-20.0</td>
<td>-21.6</td>
<td>-20.8</td>
<td>-22.6</td>
<td>-21.7 ± 1.8</td>
<td>-15.1</td>
<td>5.1 ± 1.5/2.0</td>
</tr>
<tr>
<td>553</td>
<td>Calcareous shale</td>
<td>677</td>
<td>-11.8</td>
<td>-10.9</td>
<td>-12.7</td>
<td>-11.8</td>
<td>± 2.0</td>
<td>-19.8</td>
<td>3.2 ± 0.9/1.1</td>
</tr>
<tr>
<td>551</td>
<td>Calcarenous mudstone</td>
<td>647</td>
<td>-11.6</td>
<td>-10.9</td>
<td>-12.4</td>
<td>-11.6</td>
<td>± 1.5</td>
<td>-20.1</td>
<td>2.0 ± 0.5/0.6</td>
</tr>
<tr>
<td>Lower Gazhacun Fm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>548</td>
<td>Pedogenic calcite</td>
<td>559</td>
<td>-20.1</td>
<td>-21.5</td>
<td>-20.8</td>
<td>-22.2</td>
<td>-21.5 ± 1.5</td>
<td>-14.9</td>
<td>5.0 ± 1.4/2.0</td>
</tr>
<tr>
<td>547</td>
<td>Pedogenic calcite</td>
<td>540</td>
<td>-18.7</td>
<td>-17.1</td>
<td>-17.1</td>
<td>-20.5</td>
<td>-18.8 ± 1.4</td>
<td>-12.2</td>
<td>4.5 ± 1.4/1.7</td>
</tr>
<tr>
<td>546</td>
<td>Pedogenic calcite</td>
<td>532</td>
<td>-19.6</td>
<td>-18.3</td>
<td>-18.5</td>
<td>-19.0</td>
<td>± 1.7</td>
<td>-12.4</td>
<td>4.5 ± 1.4/1.7</td>
</tr>
<tr>
<td>543B</td>
<td>Groundwater calcite</td>
<td>452</td>
<td>-18.5</td>
<td>-18.0</td>
<td>-18.6</td>
<td>-20.3</td>
<td>-18.6 ± 1.4</td>
<td>-14.9</td>
<td>4.5 ± 1.4/1.7</td>
</tr>
<tr>
<td>Rigongla Fm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>579</td>
<td>Pedogenic calcite</td>
<td>410</td>
<td>-18.9</td>
<td>-19.8</td>
<td>-19.8</td>
<td>-20.8</td>
<td>± 1.8</td>
<td>-13.2</td>
<td>4.7 ± 1.4/1.9</td>
</tr>
<tr>
<td>576</td>
<td>Groundwater calcite</td>
<td>290</td>
<td>-20.4</td>
<td>-21.3</td>
<td>-20.4</td>
<td>-22.3</td>
<td>± 1.4</td>
<td>-21.7</td>
<td>4.0 ± 0.5/0.7</td>
</tr>
<tr>
<td>575E</td>
<td>Groundwater calcite</td>
<td>285</td>
<td>-12.8</td>
<td>-11.6</td>
<td>-12.8</td>
<td>-13.7</td>
<td>± 1.2</td>
<td>-12.6</td>
<td>2.9 ± 0.9/1.0</td>
</tr>
<tr>
<td>575C</td>
<td>Groundwater calcite</td>
<td>280</td>
<td>-16.8</td>
<td>-17.7</td>
<td>-16.8</td>
<td>-18.7</td>
<td>± 1.7</td>
<td>-11.1</td>
<td>4.3 ± 1.3/1.7</td>
</tr>
<tr>
<td>575B</td>
<td>Groundwater calcite</td>
<td>278</td>
<td>-13.9</td>
<td>-14.8</td>
<td>-13.9</td>
<td>-15.8</td>
<td>± 1.8</td>
<td>-8.2</td>
<td>3.6 ± 1.1/1.3</td>
</tr>
<tr>
<td>Nianbo Fm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W0628-3</td>
<td>Paleosol</td>
<td>44</td>
<td>-24.9</td>
<td>-27.0</td>
<td>-25.0</td>
<td>-28.7</td>
<td>± 3.7</td>
<td>-20.2</td>
<td>5.9 ± 1.5/2.1</td>
</tr>
<tr>
<td>W0628-2</td>
<td>Lactuol limestone</td>
<td>34</td>
<td>-24.6</td>
<td>-27.0</td>
<td>-25.2</td>
<td>-29.0</td>
<td>± 3.8</td>
<td>-20.4</td>
<td>5.9 ± 1.5/2.0</td>
</tr>
<tr>
<td>W0628-1</td>
<td>Paleosol</td>
<td>0</td>
<td>-18.6</td>
<td>-21.6</td>
<td>-21.0</td>
<td>-22.1</td>
<td>± 1.5</td>
<td>-15.0</td>
<td>5.0 ± 1.4/2.0</td>
</tr>
</tbody>
</table>

Note: Samples with δ18O measurements are in bold. For these samples, their unique δ18O was used to calculate δ18O VPDB—Vienna Peedee belemnite; VSMOW—Vienna standard mean ocean water. Water-carbonate oxygen fractionation factors: calcite/water $\alpha = \text{EXP}((18.03 × 10^{-7}) – 3242) / 10000$ (Kim and O'Neill, 1997); siderite/water $\alpha = \text{EXP}((2.62 × 10^{-7}) – 21.71 / 10000$) (Zhang et al., 2001); dolomite/water $\alpha = \text{EXP}((2.73 × 10^{-7}) + 0.26 / 10000$) (Vasconcelos et al., 2005).
Error estimates for mean elevations are reported as the arithmetic mean of the model error for each elevation estimate.
δ18O of all samples except the Nianbo Formation have been previously published in Currie et al. (2005) and Currie et al. (2016). All δ18O values were calculated using new $T(\Delta_{	ext{C}})$ measurements.
Temperature error is reported as the standard error of the mean of all clumped-isotope measurements from that formation or sample type.
Low-elevation δ18O values: -6.6% for Rigongla and Gazhacun Formations; -4.6% for Oyuwig Formation, based on warm month mean temperature (WMMT) derived from Khan et al. (2014) and Siwalik Formation paleosol carbonate data (Quade and Cerling, 1995; Quade et al., 2013).
Temperature used for dolomite-water and calcite-water fractionation factors of lacustrine samples is the average of lacustrine calcite clumped-isotope temperatures, as these would have the most similar depositional conditions.
published (Currie et al., 2016; Fig. 1) and new oxygen-isotope compositions of lacustrine and pedogenic carbonates (n = 141) to better estimate δ18O w of paleowaters (Tables 1 and 2). The measured oxygen-isotope composition of the carbonate and measured T(Δ47) were used to calculate the oxygen-isotope value of water in equilibrium with the carbonate. As some samples are interpreted as "secondary" calcite, these water values are different than those used in the elevation calculations.

Geologic Setting

Linzizong Volcanic Arc, Southern Lhasa Block

Cretaceous–Early Tertiary Gangdese arc magmatism is commonly attributed to northward subduction of Indian oceanic lithosphere beneath Tibet (Burg et al., 1983; Tappinnoir et al., 1986, 1981). Neotethyan oceanic lithosphere, attached to the Indian plate was subducted beneath southern Eurasia prior to and during the early stages of continent-continent collision along the Indus-Yarlung suture—the tectonic boundary between the Indian subcontinent and Eurasia (Murphy et al., 1997; Ding and Lai, 2003). The volcanism represented by the Linzizong Group (ca. 69–43 Ma) and post-Early Cretaceous (younger than 100 Ma) Gangdese batholiths constituted the active continental margin of southern Eurasia.

Portions of the central to northern Lhasa terrane were covered in shallow-marine platform sediments during the Aptian–Albian, potentially as far south as the Penbo Basin (Kapp et al., 2005; Leier et al., 2007), demonstrating that much of the Lhasa terrane was at sea level in the mid-Cretaceous (Zhang, 2000). These marine sequences place a lower bound on the uplift history of the southern margin of Eurasia, but the timing of the tectonic and magmatic rise of the southern Lhasa terrane and Linzizong volcanic arc to modern elevation remains controversial.

Penbo-Linzhou Basin

The Penbo, also referred to as the Linzhou Basin (Fig. 1B) is located ~35 km north of Lhasa and 75 km north of the Indus-Yarlung suture. The modern hypsometric mean elevation of the basin drainage area is ~4200 m, with surrounding peaks <5300 m. The samples in this study were collected from modern elevations of 3950–4200 m.

This basin exposes a sedimentary and volcanic record spanning pre- to synollisional time (ca. 67 to ca. 48 Ma) and is the type locality of the nonmarine Linzizong Group (He et al., 2007). Here, the stratigraphic thickness of the Linzizong Group is ~3500 m (He et al., 2007). We focused our paleoelevation reconstruction in the Penbo Basin primarily on the ca. 56.5 to ca. 53 Ma Nianbo Formation and the ca. 50 Ma upper Puna Formation because they preserve abundant lacustrine limestone and groundwater and paleosol carbonate nodules, and they have pre- to early synollisional depositional ages. The age range of the sampled Linzizong stratigraphy of the Penbo Basin is well constrained by zircon U/Pb radiometric ages of tuffs near the base and top of the measured stratigraphy (Ding et al., 2014; He et al., 2007). Additionally, a hornblende 40Ar/39Ar age from a mafic dike intruding the Nianbo Formation provides a latest possible age of Linzizong deposition within Penbo Basin (Yue and Ding, 2006).
in this section. Nearby, the Nianbo Formation conformably to disconformably overlies the Paleocene Dianzhong Formation, which in turn unconformably overlies the Shexing and Takena Formations. The Linzizong Group and particularly the Nianbo Formation are spatially heterogeneous, such that no section in the field is representative. Nonetheless, the overall stratigraphy and sedimentology of the Nianbo Formation can be broken into three lithologic sequences: two upward-fining packages and an ash-flow tuff and massive conglomerate between the two. The lower subunit is dominated by purple and green laminated mudstones and volcanioclastic-dominated sandstones at its base. The mudstones contain nodular carbonate, pedogenic features, motting, and bioturbation, and at least one nondeformed snail shell. These are overlain by fine-grained red siltstones abundant in pedogenic carbonate interbedded with yellow to brown lacustrine marls. Fossil oysters are found in the marls. Shell morphology is preserved, but body cavities have sparry calcite infill. The uppermost part of the lower Nianbo Formation preserves well-developed calcic paleosols (Fig. 3).

The middle Nianbo subunit is defined by a period of vigorous volcanic activity. The volcanioclastic agglomerate base is topped by a 5-m-thick andesitic lava flow. A 25-m-thick welded tuff/ash flow tops this sequence, followed by ~40 m of gravel conglomerate.

The basal 10 m of the upper Nianbo subunit is composed of interbedded red mudstones and medium to very coarse sandstones. The uppermost mudstones contain groundwater carbonate horizons and abundant pedogenic carbonate. An ~10 m section of coarse to gravel conglomerate overlies the ped-rich layers. The conglomerate is...
topped by ~10 m of alternating fine and coarse sandstones. The uppermost ~80 m of the Nianbo are more variable in composition and depositional conditions, including fining-upward conglomerates, meter-thick micritic limestone beds, horizontally laminated medium-grained sandstones, sandy limestones, and paleosol horizons. Ostracods are found in one of the uppermost lacustrine limestone beds, implying a period of relatively shallow and open lakes with long residence times (Ding et al., 2014). The majority of the samples used for measuring the paleoelevation of the Nianbo Formation were derived from this upper subunit.

The uppermost preserved rocks of the Linzi-zong Group are the Pana Formation, a lower sequence of mostly andesitic volcanics and volcaniclastics overlain by a predominantly lacustrine succession of shales, mudstones, sandstones, and both pedogenic and lacustrine carbonates. The upper subunit of the Pana Formation was deposited between 50.5 ± 2.4 Ma and 48.4 ± 1.0 Ma, as dated by U/Pb zircon laser-ablation geochronology (Ding et al., 2014). Additionally, Eocene-age volcanic dikes cut the Nianbo and lower Pana Formations (He et al., 2007). Locally, Linzizong sediments may have experienced elevated temperatures due to this intrusive activity.

Oiyug Basin

The Oiyug Basin (Fig. 1C), also referred to as the Wuyu Basin, and mischaracterized as the Namling Basin (Spicer et al., 2003), which actually lies slightly farther west, is located 160 km west of Lhasa and 60 km north of the Indus Yarlung suture. The basin covers an area of ~300 km² (Wang and Chen, 1999) of the Lhasa terrane. Sampled localities are currently at elevations of 4300–4400 m, with surrounding elevations >5600 m. The modern hypsometric mean elevation of the basin drainage area is ~4600 m.

Paleogene–Neogene strata in the Oiyug Basin consist of the Paleocene Dianzhong Formation, the Paleocene–Eocene Nianbo Formation, the Oligocene–Miocene Rigongla Formation, the Miocene Gazhacun Group, and the Miocene–Pliocene Oiyug Formation. In this basin, the Nianbo Formation is composed of andesite, fluvial volcanics, lacustrine sandstones, mudstones and limestones, and argillaceous calcareous paleosols. In this study, an ~500-m-thick section of the Nianbo Formation was measured in the northern part of the Oiyug Basin (Fig. 4). The section is bordered to the south by a low-angle thrust fault that places Nianbo sediments above the younger Rigongla Formation. To the north, the section is separated from the overlying Rigongla Formation by an angular
High-elevation Lhasa block throughout the Cenozoic

Nianbo & Rigongla Formations, Oiyug Basin

Figure 4. Stratigraphic section of the Nianbo Formation in the Oiyug Basin. The geographic location for the base of this section is 29.9594°N, 89.7414°E.

unconformity. The angular unconformity marks an erosional surface that removed upper Nianbo and Pana Formation sediments from this location prior to Rigongla Formation deposition (Fig. 1C).

The lower parts of the measured Nianbo Formation (Fig. 4) consist of ~270 m of andesitic volcaniclastic rocks sparsely interbedded with thin (~20–30-cm-thick) paleosol horizons. Pedogenic calcite (W0628-1) was collected from a moderately developed paleosol horizon ~275 m above the base of the section. Pedogenic calcite nodules in this part of the section are gray-green, texturally micritic, and typically elongate (~1 cm x 2–3 cm), surrounded by red muddy matrix. The matrix material is primarily composed of weathered volcanics.

Above the volcanics and weathered volcanics, the Nianbo Formation is dominated by lacustrine limestone, sandstone, and mudstone. The depositional environment is interpreted as marginal lacustrine. The dominant lithology at the base of the thick limestone package is laminated sandy limestone (W0628-2) with very fine-grained calcareous matrix and fine to medium quartz grains. The sandy beds interbedded with the marl limestone cliffs are interpreted as terrestrial alluvium deposited in an offshore to nearshore lake environment (Mack and Rasnussen, 1984). The sedimentology of this sequence and environmental interpretations align with the lithology and sequence stratigraphy of the upper subunit of the Nianbo Formation in the Penbo Basin (Ding et al., 2014; this study). Approximately 10 m above this sampling locality, sandy limestone fines to oxidized siltstone and red mudstone with authigenic calcareous concretions (W0628-3). The Nianbo Formation in the Oiyug Basin is mapped as Paleocene to early Eocene in age. While undated in the immediate study area, U/Pb ages from the Nianbo Formation sampled ~40 km to the west near Namling range from 63.78 ± 0.46 Ma to 50.2 ± 2.2 Ma (Wang et al., 2014), in line with dating of rock record is likely missing at the unconformity between the Nianbo and Rigongla Formations in the study area. Additional radiometric ages of volcanics interbedded with the Linzizong strata are needed in order to assess the continuity of the rock record preserved in the Oiyug Basin.

The Rigongla Formation measured at the headwaters of the Ramaq River consists of dacitic to andesitic volcanic rocks interbedded with an upward-finings >500-m-thick sedimentary sequence of conglomerates, sandstones, and mudstones (Fig. 1C; Currie et al., 2016). Paleoosol and groundwater carbonate nodules were collected from an ~20-m-thick mudstone horizon between alluvial-fan and fluvial-channel conglomerate sequences in the Rigongla Formation (Currie et al., 2016). The nodules are texturally micritic and 3–15 cm in diameter.

The Gazhacun Group, previously described as the Manxiong Formation (Zhu et al., 2006), directly overlies the volcanics of the upper Rigongla Formation. The base of the Gazhacun Group is composed of ~140 m of red and gray overbank mudstones and sparse fluvial-channel sandstones and conglomerates (Currie et al., 2016). The overbank mudstones host clay-rich paleosol horizons with well-developed pedogenic calcite nodules 0.25–1.5 cm in diameter. The middle Gazhacun Group is interpreted to record a lacustrine depositional environment, represented by ~225 m of gray, green, and light-red shale and mudstone, and thin beds of siltstone and fine-grained sandstone (Currie et al., 2016). Samples from lacustrine strata of the middle Gazhacun Group are both early diagenetic calcite and dolomite nodules. Given the paucity of datable volcanics in the Rigongla Formation and lower-middle Gazhacun Group strata, the age of this stratigraphic interval is liberally bracketed between two K-feldspar 40Ar/39Ar ages from the units above and below the lower Gazhacun Group: a rhyolite in the Rigongla Formation (28.90 ± 1.52 Ma) and a felsic tuff in the upper Gazhacun Group (ca. 15 Ma; Spicer et al., 2003).

The upper Gazhacun Group, measured along the Badamaqen, consists of ~100 m of tuffaceous conglomerate and fining-upward sandstone, interbedded with carbonaceous siltstone, mudstone, shale, and coal. A siderite nodule (618A) and four shales were collected for isotopic analyses near the top of the floral locality section of Spicer et al. (2003) and Khan et al. (2014). The age of the top of the upper Gazhacun Group is constrained by a 40Ar/39Ar age of ca. 15 Ma from felsic tuff deposits within the upper part of the unit and from the base of the overlying Zongdang Group (Spicer et al., 2003).
et al., 2003). The Zongdang Group consists of ~1900 m of ash-flow tuffs and volcaniclastics (Zhu et al., 2006; Chen et al., 2008). Ash-flow tuffs from the uppermost Zongdang Group yielded K/Ar ages ranging from 8.23 ± 0.13 Ma to 7.92 ± 0.15 Ma (Chen et al., 2008).

The Upper Miocene–Pliocene Oiyug Formation conformably unconformably overlies the Zongdang Group. This unit is an ~1-km-thick package of basin-centered lacustrine deposits and associated basin-margin fan delta, fluvial, overbank, and swamp deposits (Zhu et al., 2006). The upper Oiyug Formation is dominated by lacustrine marl and mudstone (Currie et al., 2016). Lacustrine marl calcitic limestone, shales, nodular calcite, and nodular siderite were collected for isotopic analyses from the middle to upper Oiyug Formation, with an interpreted depositional age of ca. 5 Ma (Chen et al., 2008).

METHODS

In this study, we determined the δ18O_carb and δ13C_carb values of 105 carbonate samples collected from Paleocene to Eocene strata in the Penbo Basin and 36 carbonate samples from the Eocene to Pliocene strata in the Oiyug Basin. Of these samples, 7 from Penbo and 12 from Oiyug were used to determine clumped-isotope estimates of carbonate precipitation temperature T(Δc). Currie et al. (2016) reported carbon and oxygen stable-isotope compositions of Oligocene to Pliocene strata in the Oiyug Basin, and this work adds new stable-isotope compositions from Paleogene strata. We obtained a potassium feldspar total fusion 40Ar/39Ar age for Rigongla Formation volcanics in the Oiyug Basin in order to provide an upper bound for Nianbo Formation deposition. We measured apatite (U-Th)/He ages for the Qianggeren granite in the Penbo Basin in order to constrain the erosional unroofing age.

Carbonate Sample Preparation

The outer layer of carbonate samples was removed to expose fresh material for stable-isotope analysis and to make petrographic slides. Samples were powdered using a Foredom TX low-speed drill with a Brasseler USA #2 HP round bit at low speed to avoid significant frictional heating and the potential for carbonate C-O bond reordering.

Petrographic slides were made for a subset of samples that appeared minimally altered or unaltered in hand sample in order to visualize signs of aqueous alteration (dissolution features, recrystallization textures, secondary carbonates, authigenic metal oxide precipitates, etc.; see Tables 5 and 6). Petrographic analyses allow distinction between two contrasting textural relationships among preserved carbonates. One group consists of pedogenic carbonate nodules and lacustrine limestone, some of which preserve ostracods and charophyte debris within a micritic matrix with only very minor spar-filled vugs and/or microspar recrystallization (Tables 5 and 6). This minimally altered group also includes wackestones lacking evidence of secondary recrystallization. The second group, consisting of lacustrine limestone and pedogene carbonate nodules, is characterized by varying degrees of alteration, including extensive development of sparry calcite, oxidation, crosscutting veins, and increase in grain size of the formerly micritic matrix and sparry calcite veins. Later herein, we discuss our isotopic results with respect to our petrographic assessment of degree of alteration.

For the Penbo Basin, the Δc analyses were carried out independently from the petrographic observations (isotopic measurements and petrographic observations were shared only after both were completed). This blind test was carried out at Miami University as a means of assessing our ability to correctly characterize alteration by petrographic observation. For the Oiyug Basin, petrographic and carbon isotopes were both completed at the University of Chicago, Chicago, Illinois.

Standard Stable-Isotope Measurements

Isotopic measurements were completed in the stable-isotope facility in the Department of the Geophysical Sciences at the University of Chicago. All samples were analyzed for calcite δ18O and δ13C, and weight percent CaCO3 using a Gas Bench II (Thermo, Bremen, Germany) connected to a Delta V Plus (Thermo) stable-isotope mass spectrometer. Stable oxygen and carbon isotopic measurements are reported in per mil (%) using conventional delta notation, where

\[
\delta^{18}O = \left[\frac{({}^{18}O/{}^{16}O)_{sample}}{({}^{18}O/{}^{16}O)_{standard}} - 1 \right] \times 10000 \%
\]

with analogous formulation for δ13C. All carbonate oxygen and carbon isotopic compositions are reported on the VPDB scale.
TABLE 5. PETROGRAPHY OF PENBO BASIN CARBONATES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Petrographic image</th>
<th>Textural description</th>
<th>Petrographic interpretation</th>
<th>T(Δ47) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>446D</td>
<td>![image]</td>
<td>Abundant sparry calcite filling voids and veins; silification</td>
<td>Diagenetic/high T</td>
<td>49.9 ± 2.9</td>
</tr>
<tr>
<td>DL104-3b</td>
<td>![image]</td>
<td>Microspar and small amount of dense micrite; recrystallized ostracods; minor vuggy calcite spar</td>
<td>Primary/low T</td>
<td>8.5 ± 5.0</td>
</tr>
<tr>
<td>P0929-c</td>
<td>![image]</td>
<td>Microspar with patchy dense micrite; sparry vuggy calcite; some silification</td>
<td>Primary/low T</td>
<td>11.9 ± 5.6</td>
</tr>
<tr>
<td>448D</td>
<td>![image]</td>
<td>Dense micrite to microspar; ostracods; vein calcite and pyrite</td>
<td>Diagenetic/high T</td>
<td>40.9 ± 2.4</td>
</tr>
<tr>
<td>440D</td>
<td>![image]</td>
<td>Microspar/sparry calcite; silification; ostracod fossils</td>
<td>Minor alteration</td>
<td>55.2 ± 1.5</td>
</tr>
<tr>
<td>440C</td>
<td>![image]</td>
<td>Sparry calcite; calcite veins; silification</td>
<td>Diagenetic/high T</td>
<td>–</td>
</tr>
<tr>
<td>446H</td>
<td>![image]</td>
<td>Coarse microspar/sparry calcite; fibrous calcite</td>
<td>Diagenetic/high T</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: An initial assessment was made based on presence or absence of alteration textures. T(Δ47) values are included for the samples that were analyzed for Δ47.

Samples were weighed out to yield roughly 100–200 µg CaCO3 equivalent. Comparable size ranges of the isotopic standards NBS-18 (δ13C = −5.01‰ VPDB; δ18O = −23.20‰ VPDB; Coplen et al., 2006), NBS-19 (δ13C = 1.95‰ VPDB; δ18O = −2.19‰ VPDB; Goffanti, 1983), and periodically LSVEC (δ13C = −46.6‰ VPDB; Coplen et al., 2006) were interspersed with the Tibetan samples. These standards were used to assess, and correct for when needed, linearity and drift. Results for carbonate δ13C and δ18O are reported on the VPDB scale (±0.1‰ analytical uncertainty). The calculated values for water in isotopic equilibrium with the carbonate minerals, δ18Ow, are reported on the VSMOW scale.

Clumped-Isotope (Δ47) Analyses

The carbonate clumped-isotope thermometer was established using the temperature-dependent enrichment of “clumped” isotopologues in carbonates, and it can be used to determine carbonate mineralization temperature (e.g., Ghosh et al., 2006a, 2006b; Eiler, 2007; Huntington et al., 2009). The “clumping” refers to ions or molecules with more than one rare isotope (e.g., a clumped carbonate ion: 13C18O16O2). The formation of carbonate minerals in internal isotopic equilibrium results in greater clumping at lower temperatures. The clumped-isotope composition of carbonates is measured on CO2 released by phosphoric acid digestion of carbonate minerals. The composition is reported as a Δ47 value expressed in units of per mil (%), where Δ47 is defined as the enrichment in clumped CO2 with molecular mass 47 (dominated by 13C18O16O) relative to the amount of clumping expected based on a stochastic distribution of C and O isotopes as measured in the bulk isotopic composition: Δ47 = (R47/R1344) – 1) × 1000‰, where R47 = mass 47/mass 44, and R1344 denotes analogy to R47 but reflects the abundance predicted with a random distribution of isotopes. The value Δ47 is defined similarly to δ13C and δ18O, using the abundance ratios of CO2 isotopologues (rare mass 47 isotopologues compared to the common mass 44 isotopologue) referenced to a working gas that defines “zero.”

Carbonates were digested overnight in 5–7 mL of ~103% anhydrous phosphoric acid at 26 °C with acid densities of 1.92–1.94 g/cm³, verified gravimetrically prior to each use. Following acid digestion, the resultant CO2 was purified on a glass vacuum line to remove trace water vapor and isobaric contaminants. Gas was transferred through a cryogenic water trap (glass tubing immersed in LN2-ethanol slurry at −80 °C) with the CO2 frozen out (LN2) downstream and with noncondensable gases then pumped away. These noncondensable gases typically gave a pressure of 0.1–0.2 Torr in a 250 mL volume segment of the vacuum line and reaction vessel, as compared with a CO2 partial pressure of 80 Torr in 15 mL. The frozen CO2 sample was isolated from the rest of the system and warmed, with pressure reading serving as a monitor of CO2 yield from the sample digestion (902 piezo vacuum transducer, MKS Instruments, Andover, Massachusetts). Then, the CO2 was passed through a U-trap (6 mm inner diameter, 2 cm packed length) filled with...
Haysep Q (60/80 mesh, Supelco, Bellefonte, Pennsylvania), with an ~2-cm-thick layer of powdered Ag₃PO₄ (Strem Chemicals, Newburyport, Massachusetts) mixed with quartz chips at the inlet end. Small quartz wool plugs capped with silver wool plugs were used on both ends of the column to retain fine mesh and powder packing material. The U-trap thus packed served as a chromatography column. We optimized the temperature of CO₂ chromatography by varying temperature of the column from 0 to 25 °C and passing gases equilibrated at 25 °C and 1000 °C through the column. No fractionation of the equilibrated gases occurred during the room temperature trials. The transfer of CO₂ through the column at room temperature was monitored barometrically, and freezing over of CO₂ was continued for ~10 min beyond the time required for the upstream pressure to reach baseline (40–45 min total). The collected CO₂ was cryogenically transferred through a second water trap to a cold finger and then isolated and warmed for pressure reading to confirm quantitative transfer. The purified CO₂ was stored in borosilicate tubes with chlorotrifluoroethylene (CTFE) valve body and O-ring seal (Kimble-Chase, Vineland, New Jersey) until loaded into the mass spectrometer sample bellows.

Clumped-isotope measurements and traditional carbon and oxygen stable-isotope measurements were made on a Finnigan MAT253 set to measure m/z 44–49 ion beams. We employed the run structure and pressure baseline correction detailed in He et al. (2012). Oztech (Safford, Arizona) isotopic standard CO₂ tank gas (UOC 1766, d₁³C = –3.61‰ VPDB, d₁⁸O = 24.99‰ VSMOW) was used as the working reference gas during clumped-isotope analyses, and d₄⁷ values were determined with the working gas defining zero. Following Dennis et al. (2011), raw Δ₄⁷ values were standardized to gases heated to 1000 °C to approximate near-random distribution of isotopes, as well as gases equilibrated with waters of known composition at 4 °C, 26 °C, and 60 °C. Standardized Δ₄⁷ values are reported on an “absolute reference frame,” henceforth referred to as the carbon dioxide equilibrium scale (CDES) following Dennis et al. (2011) and allowing for interlaboratory comparison. We routinely measured standard calcite materials (Carrera Marble [CM] and four CaCO₃ materials from ETH-Zurich [ETH1 through 4]), which are analyzed at regular intervals in many clumped-isotope facilities for the purpose of interlaboratory calibrations and measurement comparisons. We also used frequent analyses of these standard materials as a check on internal consistency of repeated measurements within and between analytical periods (Tables A1 and A2 [see footnote 103]).

TABLE 6. PETROGRAPHY OF OIYUG BASIN CARBONATES

<table>
<thead>
<tr>
<th>Sample</th>
<th>Petrographic image</th>
<th>Textural description</th>
<th>Petrographic interpretation</th>
<th>T(Δ₄⁷) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>554B</td>
<td>554B, cross polars</td>
<td>Matrix-supported limestone; very fine-grained micritic matrix; numerous microfossils <1 mm</td>
<td>Primary/low T</td>
<td>3.9 ± 3.4</td>
</tr>
<tr>
<td>555</td>
<td></td>
<td>Red-brown matrix with gray, micritic, centimeter-sized regions (labeled); no visible recrystallization or iron rims between calcite and oxidized siliciclastics</td>
<td>Primary/low T</td>
<td>19.7 ± 4.2</td>
</tr>
<tr>
<td>579</td>
<td></td>
<td>Fissures traverse the slide from left to right (likely micron-scale veins); abundant ~1 mm rounded quartz crystals (sand clasts); mud matrix; hematite rim on micritic region?</td>
<td>Minor alteration</td>
<td>9.8 ± 4.3</td>
</tr>
<tr>
<td>578</td>
<td></td>
<td>Slightly recrystallized sparry calcite matrix mixed with micrite; finely laminated</td>
<td>Primary/low T</td>
<td>15.0 ± 3.5</td>
</tr>
<tr>
<td>W0628-1</td>
<td></td>
<td>Clast-supported and loosely lithified birefringent vein with an iron-stained rim of a different texture</td>
<td>Primary/low T</td>
<td>0.7 ± 2.3</td>
</tr>
<tr>
<td>W0628-2</td>
<td></td>
<td>Clast-supported; extensive crossing of veins; pervasive infill of sparry calcite in fissures</td>
<td>Diagenetic/high T</td>
<td>45.7 ± 8.3</td>
</tr>
<tr>
<td>W0628-3</td>
<td></td>
<td>Matrix appears to have been micritic but has been extensively crosscut by sparry veins</td>
<td>Diagenetic/high T</td>
<td>6.3 ± 8.2</td>
</tr>
</tbody>
</table>

Note: An initial assessment was made based on presence or absence of alteration textures. T(Δ₄⁷) values are included.
with a 40Ar/39Ar intercept indicative of a trapped excess Ar component (Fig. A1 [see footnote 1]).

Apatite (U-Th)/He Thermochronometry

Measurements for apatite (U-Th)/He thermochronometry were made at the Noble Gas Geochronology Laboratory at the Berkeley Geochronology Center, Berkeley, California. A brief description of the methodology is provided here; for a full description of the measurement procedures, see Tremblay et al. (2015).

Individual, euhedral apatite crystals with no visible fluid or mineral inclusions and equivalent spherical radii of 50 µm or greater were selected, photographed, and measured using a Leica MZ66 stereomicroscope. Individual crystals were loaded into PtIr packets and heated under vacuum to 1050 ± 50 °C for 6 min with an 810-nm-wavelength diode laser. The extracted gas was spiked with an aliquot of 3He, purified, and analyzed using a Pfeiffer (Asslar, Germany) Prisma quadrupole mass spectrometer QMS 200 under static vacuum. Helium blanks, determined by heating empty PtIr packets, were typically less than 5×10^{-13} moles. To achieve complete helium extraction, each sample was reheated until the 4He yield was less than 0.5% of the 4He yield in the first heating step. Molar 4He abundances were calculated by dividing the measured 3He/4He ratio by the 4He/3He ratio of a non-manometrically calibrated 4He standard gas aliquot spiked with the same molar abundance of 3He as was the unknown, and multiplying this value by the standard gas’s known 3He molar abundance.

After degassing, each sample was dissolved in 50 µL of 7 N HNO₃ spike solution containing 9.20×10^{-10} mol/L 238U, 9.03×10^{-10} mol/L 228Th, and 6.7% enriched 141Sm spike. Solutions were diluted by a factor of 20 and analyzed on a Thermo Scientific Neptune Plus multicollector inductively coupled plasma–mass spectrometer (ICP-MS) with an Aridus2 deolvatizing nebulizer sample introduction system. To standardize the analyses, we also analyzed a spiked normal solution with known U, Th, and Sm concentrations. Spiked normal solution isotope ratio measurements were reproducible to much better than 0.5% for each element. (U-Th)/He ages were calculated using blank-corrected 40He, 141Sm, 228Th, and 238U abundances. Raw ages were corrected for alpha ejection effects after Farley et al. (1996).

DISCUSSION OF RESULTS

Geochronology and Thermochronometry

A rhyolite immediately above the Rigongla-Nianbo unconformity provides a 40Ar/39Ar-K-feldspar age of 28.90 ± 1.52 Ma (Fig. A1 [see footnote 1]), providing a minimum age for the underlying Nianbo Formation. A three-point regression in the inverse isochron is not ideal for these data, and xenocrystic contamination cannot be ruled out in the Rigongla rhyolite. However, if this were the case, a well-defined regression line with reasonable trapped 40Ar/39Ar intercept would require fortuitous trade-offs between each aliquot’s age, trapped 40Ar/39Ar, and trapped to radiogenic Ar ratio, and therefore is not likely. The inverse isochron age of 28.9 ± 1.52 Ma that we report is consistent with a K/Ar age of ca. 31 Ma from the lower Rigongla Formation elsewhere in the basin (Zhu et al., 2006), which lends additional confidence to our interpretation.

Apatite grains from two samples of Qianggeren granite (L0706-2 and L0706-3) from a quarry ~4 km north of the Pana Formation in Penbo Basin yielded (U-Th)/He ages of 14.86 ± 1.83 Ma and 12.74 ± 1.47 Ma (1σ; Table 4), respectively. The Qianggeren granite sits in the hanging wall of the Gulu thrust. L0706-2 and L0706-3 are located <1–2 km from a reported zircon U/Pb age of 51.9 ± 2.5 Ma within the Qianggeren granite (He et al., 2007).
The three primary carbonates from the Nianbo Formation recorded \(\Delta_{47,\text{CDES}} \) values of 0.700‰ to 0.730‰ ± 0.020‰ (Table 3). These carbonates yielded \(T(\Delta_{47}) \) of 6–12 °C (Fig. 5A). As described in the Methods section (Sample Preparation), we interpret these as “primary” carbonate reflecting original depositional temperature. Four pedogenic and lacustrine carbonates exhibited more extensive recrystallization in thin section. These altered carbonates have \(\Delta_{47,\text{CDES}} \) values of 0.540‰–0.590‰ ± 0.010‰, with corresponding paleotemperatures from 41 °C to 55 °C. The upper end of this temperature range is similar to those determined from visual thermal alteration index values for organics sampled from the base of the Penbo section. These values correspond to vitrinite reflectance values (R0) of 0.4% to 0.5%, indicating burial temperatures ranging from 53 °C to 75 °C (Barker, 1988).

The observed variability in both \(\delta^{18}O \) and \(\Delta_{47} \) does not display any stratigraphic trend that can be attributed to progressive burial diagenesis with depth (Fig. 6). The samples that show petrographic and \(\Delta_{47} \) signs of alteration are not appreciably shifted in \(\delta^{18}O \), implying that the alteration in these samples was rock-buffered; i.e., carbonate buffered the oxygen-isotope composition relative to the small amount of water present in the system. We emphasize paleodepositions derived from samples with \(\Delta_{47} \) analyses (Table 3), but we included data from all samples (measured \(\delta^{18}O \) only) under the assumption that any alteration took place in a rock-buffered system. The remainder of the discussion of the Penbo Basin samples will focus on the implications of the isotopic compositions of the minimally altered, micritic carbonates.

Oiyug Basin

Traditional oxygen- and carbon-isotope variations were assessed for trends with location in section (relative age) and sediment type (Table 2). Oxygen analyses of siderites and dolomites from the Oiyug Basin yielded different values from the dominant calcite mineralogy. For example, calcites from the Oiyug Formation (ca. 8.1–2.5 Ma; Chen et al., 2008) yielded \(\delta^{18}O \) and \(\delta^{13}C \) values of −28.0‰ to −27.4‰ ± 0.1‰ and −0.1‰ to 1.3‰ (VPDB), and the siderite nodule yielded −10.8‰ and 12.9‰. As such, siderites and dolomites are considered separately.

Calcites from the Gazhacun Group (>15.03 Ma; Spicer et al., 2003) yielded mean \(\delta^{18}O \) and \(\delta^{13}C \) values of −28.0‰ ± 2.6‰ (ranging −21.1‰ to −11.6‰) and −6.3‰ ± 1.6‰ (ranging −8.0‰ to −2.5‰). Dolomites from the Gazhacun Group yielded mean \(\delta^{18}O_{\text{MgCO}_3} \) and \(\delta^{13}C_{\text{MgCO}_3} \) values of −6.9‰ ± 2.3‰ (ranging −11.3‰ to −5.5‰) and −6.8‰ ± 2.4‰.
The average of the “primary” Δ_p-derived temperatures for lacustrine and pedogenic carbonate was used for the $\delta^{18}O_c$ to $\delta^{13}C_c$ fractionation factors for carbonates of like lithology. Symbols are indicative of lithology. Error bars represent propagation of analytical (standard error of the mean, s.e.m.) and model error in quadrature. The mean elevation for each formation is indicated by the black circle with vertical line. The vertical dashed line marks the modern hypsometric mean elevation of the Penbo Basin.

Figure 6. Paleocene–Eocene elevation reconstruction of the Penbo Basin. We used a modified version of Rowley’s (2007) paleoaltimetry model. The average of the “primary” Δ_p-derived temperatures for lacustrine and pedogenic carbonate was used for the $\delta^{18}O_c$ to $\delta^{13}C_c$ fractionation factors for carbonates of like lithology. Symbols are indicative of lithology. Error bars represent propagation of analytical (standard error of the mean, s.e.m.) and model error in quadrature. The mean elevation for each formation is indicated by the black circle with vertical line. The vertical dashed line marks the modern hypsometric mean elevation of the Penbo Basin.

(1) Pedogenic $T(\Delta_p)$, on average, exceeds mean summer air temperature by 3–5 °C (Hough et al., 2014) and mean annual air temperature by 10–15 °C due to summertime bias in soil carbonate formation (Quade et al., 2013) and increased solar heating of the soil surface (Passey et al., 2010). Applying the latter offset, the air temperature above the location of soil carbonate formation would be 15–20 °C. While seasonality may have the dominant effect on soil carbonate formation (Passey et al., 2010; Suarez et al., 2011; Peters et al., 2013; Quade et al., 2013; Hough et al., 2014), Δ_p also varies with soil depth and duration of shade cover (Quade et al., 2013), soil moisture as it relates to the timing of carbonate formation (Burgener et al., 2016), and local soil hydrology (Ringham et al., 2016). This is to say, at the same elevation and atmospheric temperature, but under variable environmental conditions, two pedogenic calcites could record significantly different Δ_p values. For example, the two pedogenic calcites most proximal to 543A, within the Gazhacun Formation and 40 m below in the Rigongla Formation, yielded $T(\Delta_p)$ values of 7.6 ± 3.3 °C and 9.8 ± 4.3 °C, respectively. Therefore, it is reasonable to believe that the air temperature above soil carbonate 543A was much cooler than 30 °C.

(2) The bulk rock could have experienced low-grade alteration and partial recrystallization under higher temperature associated with the calcite vein (543Av). Even so, there are significant differences between $\delta^{18}O_c$ and Δ_p values of 543A and 543Av, suggesting that the alteration was not pervasive enough to cause extensive bond reordering or bulk isotopic resetting of the whole rock.

Marl calcite W0628-2 of the Nianbo Formation is also interpreted as diagenetically altered based on a Δ_p value of 0.572‰ ± 0.027‰ (±s.e.m., $n = 3$) and corresponding paleotemperature of 45.7 ± 8.3 °C. However, the other two samples from the Nianbo Formation yielded paleotemperatures of 6.7 ± 2.3 °C ($n = 6$) and 5.3 ± 8.2 °C ($n = 3$; Table 3; Fig. 5B). Further, samples W0628-2 and W0628-3 were identical in $\delta^{18}O$ within uncertainty, regardless of the high apparent $T(\Delta_p)$ retained by W0628-2. This suggests that the isotopic composition of the Nianbo Formation in the Oiyug Basin also reflects a rock-buffered system. As such, samples collected from this section likely have maintained oxygen-isotope fidelity even under higher diagenetic temperatures.

Multiple-Proxy Assessment of Diagenesis and Maximum Carbonate Temperatures

At sufficiently high temperature, solid-state bond reordering can occur in the carbonate lattice without the aid of water. Carbonate that
experiences temperatures >100 °C for 10⁹–10⁶ yr is subject to reordering of ¹³C–¹⁸O bonds to a more stochastic distribution, or a lower Δ₁₈O (Henkes et al., 2014). A high degree of ¹³C–¹⁸O clumping preserved in the carbonate lattice is thought to be diagnostic of primary carbonate because no known mechanisms are currently described to alter a carbonate to a higher Δ₁₈O value. However, recent measurements of latest Paleocene marine carbonates (Jialazi Formation) buried to at least 150–180 °C (Orme, 2015) strongly suggest that ¹⁳C–¹⁸O bonds in the carbonate lattice can increase in relative abundance (increasing Δ₁₈O) during burial- and exhumation-related alteration (Ingalls, 2017). The mechanism by which bond ordering can increase during alteration has yet to be adequately modeled and attributed to a geological process during burial and exhumation. Therefore, it is exceedingly important to provide multiple assessments of alteration and isotopic resetting/reordering when interpreting clumped-isotope and traditional stable-isotope data and apply caution in interpreting high Δ₁₈O measurements.

The detection of diageneric alteration and isotopic resetting requires careful characterization of carbonate mineralogy, inspection for recrystallization and alteration textures using petrography and microscopy, and subsampling of δ¹⁸O of clasts, veins, and matrix material (DeCelles et al., 2007; Saylor et al., 2009) to detect possible diageneric and isotopic resetting. Unfortunately, micron-scale recrystallization in the matrix and on mineral edges may go unnoticed using only these techniques (Garzione et al., 2004; Leier et al., 2009). We therefore complemented petrographic observations with further geochemical analyses to constrain thermal history and therefore the potential for solid-state alteration.

The Oiyug and Penbo Basins are structurally complex, with major thrust faults (i.e., Gulu, Puxiabaga, and Lega thrusts; He et al., 2007) that place Mesozoic strata structurally above our Paleocene–Eocene sections. Here, we carefully consider the thermal conditions experienced by Linzizong carbonates in order to assess the significance of our stable-isotope paleoaltimetry and carbonate clumped-isotope results in the Oiyug and Penbo Basins. Constraints on the timing of Gulu thrust activation and consequent burial of the Paleocene–Eocene Linzizong strata in the Penbo Basin are limited to K-feldspar ⁴⁰Ar/³⁹Ar (He et al., 2007) and apatite (U-Th)/He thermochronometry (AHe) of the Qianggeren granite ~3 km north of Penbo Basin (Fig. 1). These data suggest activation of the Gulu thrust occurred after the youngest Pana Formation sedimentation (ca. 47 Ma) and prior to the exhumation of the Qianggeren granite to ~70 °C (<3 km depth) ca. 15–12 Ma (AHe). The AHe ages closely match others to the east (Tremblay et al., 2015) and in the greater Lhasa region (Rohrmann et al., 2012), which are thought to reflect a period of regional exhumation of the southeastern Lhasa terrane. It is likely that the Paleocene–Eocene Linzizong strata were exhumed to <3 km depth (cooler than threshold temperature for solid-state reordering) as well during this regional exhumation event. Regional exhumation at ca. 15–12 Ma places a critical bound on Linzizong burial duration.

It is possible that the AHe ages presented here represent rock uplift associated with thrust exhumation, but multidiffusion domain modeling of K-feldspar from the Qianggeren granite yielded a thermal history that indicates rapid cooling from ~325 °C to <150 °C between ca. 42 and 39 Ma (He et al., 2007). We suggest that the rapid exhumation of the Qianggeren granite in the hanging wall of the Gulu thrust records the initiation of thrusting, and thus places a maximum bound on the timing of burial of the Linzizong strata.

To determine the maximum burial temperature experienced by the Linzizong sediments, we must consider contributions to the thickness of rock overburden. The absence of strata younger than the Pana Formation in the Penbo Basin and the absence of the Pana Formation at the Nianbo-Rigongla unconformity in the Oiyug Basin could both be tied to regional upper-crustal shortening (Rohrmann et al., 2012) and possibly Gulu thrust activation. It is possible that the Oligocene to Miocene strata overlying the Linzizong Group never existed in the Penbo Basin. If so, the Paleocene–Eocene Linzizong strata would have experienced thrust burial with a total overburden thickness equal to the structural thickness of the already deformed Jurassic–Triassic units. The Jurassic–Triassic units have an outcrop width of ~3 km north of Penbo Basin. The hanging wall of the next structural unit to the north contains the Qianggeren pluton intrusive into Linzizong strata that unconformably overlie mapped Carboniferous units (NGAC, 2002, map H45C002003). Interestingly, a Paleocene–Eocene E₁ granite intrudes across the Gulu thrust ~22.5 km farther east (29.9634°N, 91.4221°E; NGAC, 2012, map H46C003001), implying most Gulu-association temperatures from the organic thermal maturity estimates, perhaps boosting T(Δ₁₈O) measurements from the Nianbo Formation within the Penbo Basin do not appear to reflect solid-state reordering and are interpreted to record primary isotopic compositions or early recrystallization temperatures during water-rock alteration at shallow depths. There could be minimal reordering at the lower-bound temperatures from the organic thermal maturation estimates, perhaps boosting T(Δ₁₈O) estimates on the order of 10 °C (Stolper and Eiler, 2015). If primary temperatures were cooler than those we estimated directly, then this would result in higher paleoaltimetry estimates. We did not make any correction for this potential slight reordering, and so our altimetric estimates remain conservative. More importantly, the C-O
High-elevation Lhasa block throughout the Cenozoic

bonds of Nianbo Formation carbonate yielding “low” \(T(\Delta_{d}) \) measurements appear to be robust to elevated burial temperature no matter the precise time-temperature history of the Gulu thrust, and they are interpreted to record primary mineral formation temperatures from the Paleocene to Eocene. These samples provide apparent evidence for the survival of primary clumped-isotope values even in the face of substantial burial and heating.

Testing the Predictive Capability of Petrographic Observations in Assessing Carbonate Diagenesis

A subset of nodular, groundwater, lacustrine marl, pedogenic, and vein calcite samples from Penbo and Oiyug was selected for \(\Delta_{d} \) analyses based on sedimentary and petrographic textures seen in thin section (Tables 5 and 6) in order to (1) sufficiently sample primary isotopic compositions to derive paleotemperatures of each time slice throughout the Cenozoic, and (2) provide a comparison between microscopic assessment of primary carbonate textures and direct measurements of \(T(\Delta_{d}) \). This enabled a check on our ability to correctly assess diagenetic alteration in thin section. Based on visual observations in petrographic section, each sample was binned as “primary” (lacking evidence of recrystallization), “minor alteration” (heterogeneous, macroscopic, and could be potentially avoided by careful sample drilling), or “diagenetic” (extensive recrystallization present).

Temperatures derived from clumped-isotope measurements generally corresponded with the petrographic interpretations for six of the seven Oiyug Basin samples. One sample, W0628-3 from the Nianbo Formation, was predicted to be diagenetic and yield a high \(T(\Delta_{d}) \) \((\Delta_{d} \leq 0) \) because of extensive crosscutting of secondary calcite veins. Contrary to this assessment, triplicate measurements of micrite from this sample yielded a \(T(\Delta_{d}) \) of \(5.3 \pm 8.2 \, ^\circ\text{C} \) (s.e.m.). This combination of petrographic observation and isotopic measurement suggests two possible interactions: (1) Alteration occurred very early in the rock’s history while the rock was at high elevation prior to burial, so the altered carbonate still yields a cool signal, or (2) most of the sample mass is unaltered micrite. In the second scenario, even if the calcitic veins experienced warm temperatures, they did not significantly shift the bulk \(\Delta_{d} \) values. Thermochromometric data, petrography, and the \(\Delta_{d} \)-derived temperatures \((\Delta_{d} \) are in agreement that sediments and paleosol from the Oiyug and Penbo Basins have not reached high enough burial temperatures that would likely alter the original \(\Delta_{d} \) composition of carbonates via solid-state alteration. Therefore, we consider our low \(T(\Delta_{d}) \) carbonates from both sedimentary basins to represent primary depositional conditions throughout the Cenozoic.

Paleocene to Eocene Stable-Isotope Paleoaltimetry of the Lhasa Terrane

Penbo Basin

All clumped-isotope samples from the Penbo Basin were derived from the Nianbo Formation. As such, we used the average of the three \(\Delta_{d} \)-derived “primary” paleotemperatures \((8.9 \pm 5.0 \, ^\circ\text{C}) \) coupled with measured \(\delta^{18}\text{O} \) to calculate the isotopic composition of the water with which calcite equilibrated (Kim and O’Neil, 1997). Paleowater \(\delta^{18}\text{O} \) values of the Nianbo Formation (ranging \(-11.8^\circ\text{C} \) to \(-22.6^\circ\text{C} \)) were used to estimate evolution \((\Delta T(\delta^{18}\text{O})) \). We report both individual evolution estimates and the mean elevation of each dominant lithology within a geologic formation (Table 1; Fig. 6).

The best estimate of the paleoelevation of the Nianbo Formation preserved in the Penbo Basin is 4.4 \(+1.3/-1.7 \) km, comparable to modern evolution of this basin (Table 1; Fig. 6). We view this estimate to be conservative because we employed the modern isotopic lapse rate, which is likely significantly steeper than the true lapse rate in the early Eocene (Rowley, 2007; Rowley and Garzione, 2007). Further, the Siwalik value for low-latitude \((\sim 19.6 \pm 3.9^\circ\text{N}; \) Quade et al., 1989), low-elevation precipitation likely has lower \(\delta^{18}\text{O} \) than actual precipitation in the source region for moisture advecting to higher altitudes during the considerably warmer early Eocene. The use of an isotopically more negative low-elevation precipitation source contributes to making our paleoelevation calculations conservative, i.e., underestimates the true elevation.

We applied the mean \(T(\Delta_{d}) \) derived from the underlying Nianbo Formation to calculate \(\delta^{18}\text{O} \) of the overlying upper Pana Formation sediments. This succession yielded paleosurface water isotopic compositions of \(-16.9^\circ\text{C} \) to \(-13.4^\circ\text{C} \) VSMOW. These paleoprecipitation values correspond to an estimated paleoelevation of the Pana Formation of 4.1 \(+1.2/-1.6 \) km, identical to the underlying Nianbo Formation within error.

Oiyug Basin

The Nianbo, Rigongla, and Lower Ghazacun Formations are dominated by a common lithology (pedogenic calcite), which allows for a straightforward characterization of the Paleocene to Miocene elevation history (Table 2). For samples with clumped-isotope measurements, the sample-specific \(T(\Delta_{d}) \) was applied to calculate carbonate-water isotopic fractionation. An average \(T(\Delta_{d}) \) value for each geologic formation was applied for samples from which only \(\delta^{18}\text{O} \) was measured. Employing \(T(\Delta_{d}) \) values of \(3.0 \pm 8.2 \, ^\circ\text{C} \) for the Nianbo Formation, \(9.8 \pm 4.3 \, ^\circ\text{C} \) for the Rigongla Formation, and \(18.9 \pm 8.2 \, ^\circ\text{C} \) for the Lower Ghazacun member, we calculated \(\Delta T(\delta^{18}\text{O}) \) of \(-18.5^\circ\text{C} \pm 3.1^\circ\text{C}, \) \(-10.7^\circ\text{C} \pm 3.5^\circ\text{C}, \) and \(-13.8^\circ\text{C} \pm 1.9^\circ\text{C} \) VSMOW \((1 \sigma), \) respectively. Taking the mean \((\pm 2\sigma \) model and analytical error) of all carbonates within these formations yielded mean elevation estimates of 5.6 \(+1.5/-2.1 \) km, 4.1 \(+1.3/-1.6 \) km, and 4.5 \(+1.5/-1.7 \) km, respectively (Fig. 7). The elevation estimate for the Paleocene–Eocene Nianbo Formation suggests that the Oiyug region was 0.5–1.5 km higher at the onset of India-Asia collision than it is today.

Early and middle Miocene Ghazacun carbonate oxygen compositions spanned a broad range, \(-5.5^\circ\text{C} \) to \(+21.1^\circ\text{C} \) VPD. All marl and lacustrine calcite, mudstones, and dolomite deposited in the middle member of the Ghazacun Group were \(^{18}\text{O} \)-enriched relative to other units. The higher \(\delta^{18}\text{O} \) values in the middle Ghazacun member are interpreted as the result of evaporative enrichment because pedogenic calcites from stratigraphically proximal horizons yielded low \(T(\Delta_{d}) \) values of 3.9–19.7 \(^\circ\text{C} \) with low \(\delta^{18}\text{O} \) values.

Evaporative enrichment was not clearly evident in lacustrine calcite and siderite in the older Nianbo Formation or the younger Oiyug Formation. The mean elevation derived from the two calcite clumped-isotope samples in the Oiyug Formation is 6.5 \(+1.8/-2.3 \) km, using an average \(\Delta T(\delta^{18}\text{O}) \) of \(-24.2^\circ\text{C} \pm 1.5^\circ\text{C} \) (Table 2). As a comparison, the elevation estimate of siderite nodule 618A from the upper Ghazacun is 4.4 \(+1.3/-1.8 \) km \((\Delta T(\delta^{18}\text{O}) \) of \(-11.7^\circ\text{C} \). We accept the elevations provided by the calcites in the Ghazacun and Oiyug Formations because of the preservation of primary \(\Delta_{d} \) values (Fig. 5B) and the evaporative trend demonstrated by plotting \(\delta^{18}\text{O} \) of the two siderite samples relative to \(\delta D_{\text{ref. not}} \) and \(\delta D_{\text{ref. shum}} \) from the same sedimentary horizon (see discussion and Fig. A2 [see footnote 1]).

Comparing Isotopic and Temperature Lapse Rates

There can be a correlation between degree of depletion of oxygen in meteoric water and formation temperature because both are controlled by atmospheric lapse rates. Estimates of tropical sea-surface temperature for times bracketing the age of the Nianbo Formation imply \(T >30 \, ^\circ\text{C} \) (Pearson et al., 2001) and thus a temperature gradient from sea level to the Penbo Basin of \(>20 \pm 5 \, ^\circ\text{C} \). A typical 6 \(^\circ\text{C}/\text{km} \) atmospheric lapse rate implies elevations in excess of 3 km.
Figure 7. Cenozoic elevation reconstruction of the Oiyug Basin, southern Tibet. Calculated paleoelevations and oxygen-isotope compositions of pedogenic, lacustrine/marl, and groundwater calcite, and nodular siderite and dolomite are plotted relative to sample location in stratigraphic section and age. Symbols are indicative of lithology. Ages were taken from paleomagnetic (Chen et al., 2008) and radiometric data (Zhou et al., 2010), as well as one 40Ar/39Ar age from this study. Error bars represent propagation of analytical (standard error of the mean, s.e.m.) and model error in quadrature. The mean elevation for each formation is indicated by the black circle with vertical line. The mean elevations derived from lacustrine and pedogenic calcites in the Gazhacun Formation are plotted separately to visualize the isotopic enrichment of lacustrine dolomites and calcites. The vertical dashed line marks the modern hypsometric mean elevation of the Oiyug Basin.

Ground surface temperatures are typically warmer than the atmosphere at the same height, and pedogenic and lake carbonates appear to record this with a summer seasonal bias (Huntington et al., 2010). Thus, our paleotemperatures are also consistent with an elevation of ~4 km.

HIGH-ELEVATION SOUTHERN MARGIN OF EURASIA

Using $T(\Delta_p)$ and δ^18O values of pedogenic and lacustrine carbonates from the Paleocene–Eocene Nianbo Formation, we are able to advance the elevation record of the southern Lhasa block an additional ~20 m.y. compared with the oldest prior records (Currie et al., 2016). Our oldest paleoelevations support a preexisting “high” topography on the southern margin of Eurasia prior to the onset of India-Asia collision (Ding et al., 2014), with elevations potentially ~1 km higher than today in some areas. However, the sediments of the Nianbo Formation could have been deposited at an even higher altitude. The Paleocene–Eocene elevation estimate presented here is conservative because the isotopic lapse rate model was constructed using global mean T and RH data for the modern low-latitude ocean surface. The warmer temperatures of the Eocene would shift the $\Delta(\delta^18O)$-elevation relationship to higher elevation for a given offset in precipitation isotopic compositions. We accept the modern calibration as a conservative representation of past environmental conditions because we are data limited in our knowledge of the frequency distribution of low-latitude ocean surface T and RH in the Paleocene–Eocene.

The Paleocene–Eocene Nianbo Formation sits unconformably below the Rigongla Formation in the Oiyug Basin, so the elevation history between the two units is unconstrained. However, the similarity of estimated $T(\Delta_p)$ and δ^18O values between the Nianbo and Rigongla units implies little variability during this interval. The Rigongla and lower Gazhacun Formations yielded elevation estimates close to the modern mean elevation of the Oiyug Basin.

A face value assessment of model elevations from the middle and upper Gazhacun Formations, when interpreted based on $\Delta(\delta^18O)$ alone, would suggest that the southern Lhasa block experienced an interval of topographic deflation to 2.5 km in the early to mid-Miocene. However, it is unlikely that the hypsometric mean elevation of the Oiyug Basin experienced subsidence from 4.5 km to 2.5 km in the Miocene, followed by an uplift to >6 km in the Pliocene, and subsidence to ~4.6 km by present day. It is more likely that the enriched oxygen values of the Gazhacun Formation are an evaporative overprint of the original precipitation signal.

However, the potential low in Miocene elevation temporarily corresponds with the formation of the Kailas Basin (26–18 Ma; DeCelles et al., 2011) and the Liuqu conglomerate (ca. 21–17 Ma; Leary et al., 2017), both interpreted to have formed during an elevation low within the suture zone. The Kailas Formation, named after its type locality at Mount Kailas, extends ~1400 km along strike and is <1–4 km thick where exposed. The Kailas Basin is interpreted as a continental rift basin resulting from <5–10 km horizontal extension, attributed to rollback of the subducting Indian slab beneath Tibet (DeCelles et al., 2011). The shearing and subsequent breakoff of the Indian slab would have caused a southward and downward pull on the overlying Indian continent, resulting in enough extension to drive the subsidence necessary to form the Kailas Basin in southern Tibet (DeCelles et al., 2011). The δ^18O values from carbonate nodules within the Liuqu conglomerate have been used in a paleoenvironmental assessment suggesting that the Indus-Yarlung suture was wet and well-vegetated during deposition (Leary et al., 2017). These conditions are suggestive of low elevation.

Additionally, Ding et al. (2017) presented paleoenthalpy-based paleoaltimetry that agrees with a low-elevation Indus-Yarlung suture during Liuqu deposition, although they dated the deposition of Liuqu flora to the latest Paleocene (ca. 56 Ma). Ding et al. (2017) also presented paleoflora-based paleoaltimetry results from the Qiuwu Formation in Qiaibulin (ca. 26–19 Ma), which more closely correlates with...
the elevation estimates of Leary et al. (2017). Based on the Qiuwu Formation paleoenthalpy estimates, the Indus-Yarlung suture was already well above sea level (~2.3 ± 0.9 km) by this interval of the Miocene. Due to the temporal overlap of the extension associated with the formation of the Kailas Basin and Liuqu conglomerate, assuming Miocene deposition, and the deposition of the δ18O-enriched sediments of the middle Gazhacun member in the Oiyug Basin, it is conceivable but unlikely that the marl calcites and dolomites in this study preserve a primary isotopic signature representative of mid-Miocene precipitation at low elevation.

Further work to the west along the southern Lhasa block could determine whether the apparent lower elevations are actually a local evaporative overprint as interpreted here or are seen in the coeval carbonate record in the southern Lhasa block, and whether there is evidence elsewhere of ~6 km elevations at this time in the Miocene.

Past Models of the Regional Tectonic History of the Lhasa Block

The tectonic development of Earth's quintessential active continent-continent collision zone has been extensively studied for the past three decades, with particular attention paid to the development and persistence of extreme high elevations. However, the majority of previous work on the uplift history has invoked models of en masse (Englund and Houseman, 1986; Harrison et al., 1992; Molnar et al., 1993; Harrison et al., 1995) or local (Wang et al., 2006) plateau uplift in the Neogene. The paleoaltimetry work presented in this paper provides geochemical evidence that counters models involving late Cenozoic uplift.

Late Cretaceous to Early Cenozoic

Contrary to earlier models of Neogene uplift, Kapp et al. (2007) presented tectonic evidence that the Lhasa block must have undergone extensive crustal thickening by the early Paleogene, if not in the Cretaceous. Kapp et al. (2007) used kinematic models to demonstrate that a precollisional northward-vergent retroarc thrust belt could have accommodated >250 km of N-S shortening. They attributed an additional >160 km of shortening to the emplacement of the Lhasa-Damxung thrust sheet, which was associated with a magmatic flare-up ca. 69 Ma due to removal of thickened mantle lithosphere. Kapp et al. (2007) coined their tectonic evolution model for the Lhasa terrane the “Lasaplano”—a Cretaceous–Early Tertiary Cordilleran-style (contractional) orogen associated with the Gangdese

High-elevation Lhasa block throughout the Cenozoic

Harrison et al. (1992) and Molnar et al. (1993) asserted that the southern Tibetan Plateau reached its maximum elevation by 8 ± 1 Ma. Harrison et al. (1992, 1995) suggested that the initiation of slip on the Nyainqentanghla detachment fault was result of the Tibetan Plateau attaining its maximum potential crustal thickness for the lithospheric temperature distribution and convergence rate. They reason that slip on the NE-SW–striking Yangbajian graben northwest of Lhasa and other N-S–striking rifts are indicative of extensional orogenetic collapse due to thickening of the continental crust during shortening. K-feldspar and biotite 40Ar/39Ar thermochronological data from the uplifted footwall of the graben-defining Nyainqentanghla detachment fault are indicative of fault and shear zone initiation at 8 ± 1 Ma. Harrison et al. (1992, 1995) used the numerically modeled temperature history and slip rate (3 mm/yr) to predict that the southern Tibetan Plateau reached its elevation and crustal thickness threshold at this time and collapsed under its thickened crustal mass by way of graben formation.

However, has been argued previously by Currie et al. (2005, 2016), and fully consistent with the new data presented here from the Oiyug Basin, existing paleoaltimetry data from various regions of the Lhasa block, including the Nima Basin (DeCelles et al., 2007; Huntington et al., 2015), Lunpola Basin (Polissar et al., 2009; Rowley and Currie, 2006), and Himalayas (Garzione et al., 2000; Rowley and Garzione, 2007; Gebelin et al., 2013; Rowley et al., 2005), as well as eastern Tibet (Hoke et al., 2014; Li et al., 2015), are all consistent with little or no change in elevation in the past 20 or more million years, and thus these data are incompatible with the significant late Neogene uplift compatible with the models of Harrison et al. (1992) and Molnar et al. (1993).

IMPACT OF EVAPORATIVE ENRICHMENT OF SURFACE WATERS ON PALEOELEVATION ESTIMATES

Elevations derived from two siderite samples (621F and 618A of the Oiyug Basin) are apparently offset by up to 2 km from the bulk of the data in their sampled sections. Here, we present an assessment of evaporative overprinting of primary water signatures in these siderites. We interpret the siderites as evaporatively enriched, and we report the mean elevation estimates of each formation focusing on preserved primary oxygen values.

Evaporative re-enrichment of δ18Ow, as recorded by δ18Ow, is particularly prevalent in carbonates formed in closed lakes and some groundwater systems (Steinman et al., 2013). The covariance of oxygen and hydrogen isotopes of meteoric water usually follows the established global meteoric water line (GMWL; Friedman, 1953; Rozanski et al., 1993). However, fast evaporation causes a kinetic isotope effect that disturbs this trend, with a greater effect on the oxygen isotopes (Craig, 1961). The “evaporative slope,” or trajectory off the GMWL, is determined by local relative humidity and temperature (Clark and Fritz, 1997). Polissar et al. (2009), using combined δ18O and δD of samples from the Lunpola Basin, were able to corroborate the interpretation of Rowley and Currie (2006) that variable evaporative enrichment was the primary control on the isotopic composition of their samples. Polissar et al. (2009) thereby provided independent support for the use of the more negative oxygen-isotope compositions for the purposes of paleoaltimetry.

Oiyug Basin localities 618 (Upper Gazhacun Formation) and 621 (Oiyug Formation) provide both δ18O and δD (from carbonates and organics, respectively), allowing us to plot these samples relative to the long-term precipitation amount-weighted mean GMWL (δD = 8.20 × δ18O + 11.27; Rozanski et al., 1993). We correlated δ18Ow, and δDw, using the GMWL in order to compare relative isotopic enrichment of different materials within the same sedimentary horizons (618 or 621; Fig. A2 [see footnote 1]). Calcite-derived surface-water oxygen-isotope compositions from the 621 horizon were isotopically lighter than their corresponding δD values, calculated from coeval leaf waxes. Very low δ18Ow could indicate diagenesis, but because both calcites retain primary Δw-derived temperatures, we can rule out the possibility of excessive alteration. However, the two siderites from the 618 and 621 localities yielded δ18Ow estimates that are ~4‰–10‰ higher than expected from δD values of coeval leaf waxes. Based on the observation that the calcites from these localities appear to preserve primary δ18Ow values, we interpret the δO-enriched siderites to be the product of groundwater evaporation. This suggests that any estimated water δ18O compositions from this section with values > 20‰ are likely evaporatively δO-enriched values. We followed this approach by stressing elevation estimates based on the more δO-depleted compositions under the assumption that more-enriched values reflect more extensive evaporative reenrichment relative to precipitation (Clark and Fritz, 1997).
CENOZOIC CLIMATE

Reported $T(\Delta_p)$ values (Table 3) are likely warmer than mean annual air temperature (MAAT) due to the nature of increased carbonate precipitation in the warm months in both soils and lake settings (Quade et al., 2013; Huntington et al., 2010). $T(\Delta_p)$ therefore likely describes a warm-month temperature, June-July-August (JJA), for lake-derived sediments and a peak summer temperature for paleosols (Quade et al., 2013). Soil carbonate formation (due to CO$_2$ outgassing during groundwater evaporation) is most prevalent in the summer due to incident sunlight warming the uppermost 25 cm of soil. Lacustrine carbonate formation occurs in warm, unmixed near-surface waters. Here, abundant sunlight supports photosynthetic carbon fixation, which in turn can drive calcite and aragonite supersaturation by increasing pH and providing carbonate nucleation sites (Stumm and Morgan, 1981). For the purpose of both isotopic and temperature lapse rates in calculating paleoelevations, reporting warmer temperatures than MAAT assures a conservative estimate of paleoelevation.

The increased evaporative signal seen in the middle Gzhacun lake sediments could indicate a paleoenvironmental change, such as shallower, potentially closed playa lakes in this region in the mid-Miocene, or a paleoclimatic change, such as warmer temperatures, decreased humidity, or changes in atmospheric circulation injecting drier air masses. The lacustrine dolomites from the Badamaqen section are stratigraphically closest to clumped-isotope sample 555 with a $T(\Delta_p)$ value of 19.7 ± 4.2 °C (±s.e.m.). However, the lacustrine calcites, 551 and 553, are temporally bracketed by clumped-isotope samples 554B and 548 with $T(\Delta_p)$ values of 3.9 ± 3.4 °C and 7.6 ± 3.3 °C, respectively. Khan et al. (2014) used the Climate Leaf Analysis Multivariate Program (CLAMP) on a ca. 15 Ma fossil flora from this region to estimate a WMMT of 8.8 °C and cold month mean temperature (CMMT) of ~6 ± 4 °C for the Oiyug Basin. Sample 555 did not provide enough evidence to suggest that the mean temperature of the Oiyug Basin was significantly warmer during the mid-Miocene. The evaporative enrichment signal, preserved as a shift to higher δ18O values in lake sediments, can likely be attributed to shallow playalake morphology. However, shifts in regional climate and atmospheric circulation should also be considered.

Tectonic-Weathering-Climate Feedbacks

Himalayan paleoaltimetry, or more specifically, the timing of the rise of the Himalaya, has figured prominently in attempts to connect global cooling during the Cenozoic with continental weathering rates and pCO$_2$ (Ruddiman and Kutzbach, 1989; Raymo and Ruddiman, 1992; Harrison et al., 1992; Kutzbach et al., 1989; Molnar et al., 1993). Cenozoic cooling is documented most thoroughly in the δ18O records of benthic foraminifers (e.g., Zachos et al., 2001). The potential for a connection between global climate and weathering is forged through the central role of CO$_2$ as both a greenhouse gas and chemical weathering agent (e.g., Kump et al., 2000). The chemical weathering of silicate and aluminosilicate rocks consumes CO$_2$ as carbonic acid, exporting cations and carbonate alkalinity to the oceans, where both are removed as carbonate minerals with generic overall reactions (e.g., Ebelmen, 1845; Urey, 1952; Holman, 1978; Berner and Maasch, 1996):

$$(\text{Ca,Mg})\text{SiO}_3 + \text{CO}_2 \rightarrow (\text{Ca,Mg})\text{CO}_3 + \text{SiO}_2$$

This type of chemical weathering serves as a net sink for atmospheric CO$_2$. Raymo et al. (1988) and Raymo and Ruddiman (1992) suggested that uplift of the Himalaya could have enhanced chemical weathering rates by increasing the surface area of aluminosilicates available to weather. This surface area generation resulted from physical erosion processes that were accelerated by relief and glacial activity.

Evidence for the temporal link between the rise of the Himalaya and shifts in global weathering fluxes has relied heavily on the marine Sr isotope record. Sr has a long residence time in both continental weathering rates and CO$_2$ source to the atmosphere (e.g., Beck et al., 2001). The potential for a connection between global climate and weathering is forged through the central role of CO$_2$ as both a greenhouse gas and chemical weathering agent (e.g., Kump et al., 2000). The chemical weathering of silicate and aluminosilicate rocks consumes CO$_2$ as carbonic acid, exporting cations and carbonate alkalinity to the oceans, where both are removed as carbonate minerals with generic overall reactions (e.g., Ebelmen, 1845; Urey, 1952; Holman, 1978; Berner and Maasch, 1996):

$$(\text{Ca,Mg})\text{SiO}_3 + \text{CO}_2 \rightarrow (\text{Ca,Mg})\text{CO}_3 + \text{SiO}_2$$

This type of chemical weathering serves as a net sink for atmospheric CO$_2$. Raymo et al. (1988) and Raymo and Ruddiman (1992) suggested that uplift of the Himalaya could have enhanced chemical weathering rates by increasing the surface area of aluminosilicates available to weather. This surface area generation resulted from physical erosion processes that were accelerated by relief and glacial activity.

Evidence for the temporal link between the rise of the Himalaya and shifts in global weathering fluxes has relied heavily on the marine Sr isotope record. Sr has a long residence time in both continental weathering rates and CO$_2$ source to the atmosphere (e.g., Beck et al., 2001). The potential for a connection between global climate and weathering is forged through the central role of CO$_2$ as both a greenhouse gas and chemical weathering agent (e.g., Kump et al., 2000). The chemical weathering of silicate and aluminosilicate rocks consumes CO$_2$ as carbonic acid, exporting cations and carbonate alkalinity to the oceans, where both are removed as carbonate minerals with generic overall reactions (e.g., Ebelmen, 1845; Urey, 1952; Holman, 1978; Berner and Maasch, 1996):

$$(\text{Ca,Mg})\text{SiO}_3 + \text{CO}_2 \rightarrow (\text{Ca,Mg})\text{CO}_3 + \text{SiO}_2$$

This type of chemical weathering serves as a net sink for atmospheric CO$_2$. Raymo et al. (1988) and Raymo and Ruddiman (1992) suggested that uplift of the Himalaya could have enhanced chemical weathering rates by increasing the surface area of aluminosilicates available to weather. This surface area generation resulted from physical erosion processes that were accelerated by relief and glacial activity.

Evidence for the temporal link between the rise of the Himalaya and shifts in global weathering fluxes has relied heavily on the marine Sr isotope record. Sr has a long residence time in both continental weathering rates and CO$_2$ source to the atmosphere (e.g., Beck et al., 2001). The potential for a connection between global climate and weathering is forged through the central role of CO$_2$ as both a greenhouse gas and chemical weathering agent (e.g., Kump et al., 2000). The chemical weathering of silicate and aluminosilicate rocks consumes CO$_2$ as carbonic acid, exporting cations and carbonate alkalinity to the oceans, where both are removed as carbonate minerals with generic overall reactions (e.g., Ebelmen, 1845; Urey, 1952; Holman, 1978; Berner and Maasch, 1996):

$$(\text{Ca,Mg})\text{SiO}_3 + \text{CO}_2 \rightarrow (\text{Ca,Mg})\text{CO}_3 + \text{SiO}_2$$

This type of chemical weathering serves as a net sink for atmospheric CO$_2$. Raymo et al. (1988) and Raymo and Ruddiman (1992) suggested that uplift of the Himalaya could have enhanced chemical weathering rates by increasing the surface area of aluminosilicates available to weather. This surface area generation resulted from physical erosion processes that were accelerated by relief and glacial activity.

Evidence for the temporal link between the rise of the Himalaya and shifts in global weathering fluxes has relied heavily on the marine Sr isotope record. Sr has a long residence time in both continental weathering rates and CO$_2$ source to the atmosphere (e.g., Beck et al., 2001). The potential for a connection between global climate and weathering is forged through the central role of CO$_2$ as both a greenhouse gas and chemical weathering agent (e.g., Kump et al., 2000). The chemical weathering of silicate and aluminosilicate rocks consumes CO$_2$ as carbonic acid, exporting cations and carbonate alkalinity to the oceans, where both are removed as carbonate minerals with generic overall reactions (e.g., Ebelmen, 1845; Urey, 1952; Holman, 1978; Berner and Maasch, 1996):

$$(\text{Ca,Mg})\text{SiO}_3 + \text{CO}_2 \rightarrow (\text{Ca,Mg})\text{CO}_3 + \text{SiO}_2$$

This type of chemical weathering serves as a net sink for atmospheric CO$_2$. Raymo et al. (1988) and Raymo and Ruddiman (1992) suggested that uplift of the Himalaya could have enhanced chemical weathering rates by increasing the surface area of aluminosilicates available to weather. This surface area generation resulted from physical erosion processes that were accelerated by relief and glacial activity.

Evidence for the temporal link between the rise of the Himalaya and shifts in global weathering fluxes has relied heavily on the marine Sr isotope record. Sr has a long residence time in both continental weathering rates and CO$_2$ source to the atmosphere (e.g., Beck et al., 2001). The potential for a connection between global climate and weathering is forged through the central role of CO$_2$ as both a greenhouse gas and chemical weathering agent (e.g., Kump et al., 2000). The chemical weathering of silicate and aluminosilicate rocks consumes CO$_2$ as carbonic acid, exporting cations and carbonate alkalinity to the oceans, where both are removed as carbonate minerals with generic overall reactions (e.g., Ebelmen, 1845; Urey, 1952; Holman, 1978; Berner and Maasch, 1996):

$$(\text{Ca,Mg})\text{SiO}_3 + \text{CO}_2 \rightarrow (\text{Ca,Mg})\text{CO}_3 + \text{SiO}_2$$

This type of chemical weathering serves as a net sink for atmospheric CO$_2$. Raymo et al. (1988) and Raymo and Ruddiman (1992) suggested that uplift of the Himalaya could have enhanced chemical weathering rates by increasing the surface area of aluminosilicates available to weather. This surface area generation resulted from physical erosion processes that were accelerated by relief and glacial activity.
High-elevation Lhasa block throughout the Cenozoic

Figure 8. Cenozoic marine Sr isotope record in relation to source flux compositions. The major feature of the Cenozoic record of seawater $^{87}\text{Sr}/^{86}\text{Sr}$ (plotted here using measured values on planktonic foraminifers; Misra and Froelich, 2012) is the steep climb in ratios from roughly 38–36 Ma to present. This is conventionally interpreted as reflecting the onset of uplift in the India-Eurasia collision system, with chemical weathering of radiogenic terrains (e.g., Raymo and Ruddiman, 1992; Richter et al., 1992). The modern-day isotopic composition of the Ganges-Brahmaputra dissolved Sr flux is sufficiently high (e.g., Palmer and Edmond, 1992; Galy et al., 1999; indicated on schematic) and sufficiently large that it shifts the modern global average river input flux to high $^{87}\text{Sr}/^{86}\text{Sr}$ ratios (e.g., Edmond, 1992). This sustains the marine $^{87}\text{Sr}/^{86}\text{Sr}$ ratio at elevated values relative to the Paleogene. Our results indicate that the Linzizong arc was already at modern elevations in the late Paleocene and early Eocene. If chemical weathering rates were accelerated in these early stages of India-Eurasia collision, they likely would not have exerted significant influence on the marine Sr isotope record, because the arc lithologies had relatively non-radiogenic isotopic compositions (Mo et al., 2008). Major Cenozoic climate and tectonic events are marked with arrows: onset of India-Asia collision (OIAC), Paleocene-Eocene thermal maximum (PETM), mid-Eocene climatic optimum (MECO), and mid-Miocene climatic optimum (MMCO). MOR—mid-ocean ridge; K—Cretaceous.

CONCLUSIONS

We reconstructed an elevation history from the Tibetan Plateau spanning nearly the entire Cenozoic, from the onset of India-Asia collision to the present. This study provides multiple lines of geochemical evidence that the southern margin of the Lhasa block was at modern elevation or higher (4 to >5 km) around the onset of collision at ca. 55 Ma. In particular, carbonate clumped isotopes provide a new dimension to previous paleo-elevation reconstructions of the southern Lhasa terrane. Additionally, the Paleocene–Eocene carbonates of the Penbo Basin provide apparent evidence that clumped-isotope values can survive substantial burial and heating. This result underscores the importance of detail and persistence in using isotopic proxies in studies of past climate and tectonics.

We find that both temperature lapse rates, informed by our clumped-isotope measurements, and traditional stable-isotope lapse rates of paleoprecipitation, informed by oxygen-isotope compositions of lacustrine and pedogenic carbonates, agree that the sediments associated with the Linzizong volcanic arc are in reasonable accord with the “Lhasaplano” model of tectonic evolution. Further work on the central and northern plateau is necessary in order to differentiate between a preexisting Andean-type volcanic arc and a more extensive high terrain such as a proto-plateau in the early Cenozoic. Additionally, our data indicate high topography at low latitude dating to before the Eocene climatic optimum, suggesting more complicated linkages among the Himalayan orogeny, proxies...
for chemical weathering, and tectonics, weathering, and climate.

ACKNOWLEDGMENTS

We thank R. Plotnick and K. Ritterbusch for assistance with petrographic analyses, B. He for assistance with clumped-isotope measurements, and D. Schrag and S. Bernasconi for providing carbonate isotopic standards. Ingalls would like to thank Madison Ball and Xu Qiang for assistance in the field. The science and structure of this paper were greatly improved by thoughtful reviews by D. Orme and J. Quade, and comments from GSA Bulletin Editor B. Singer. This work was supported by National Science Foundation grant EAR-0609756 awarded to Currie and grant EAR-1111274 awarded to Rowley and Shuster, and a Geosociological Society of America Graduate Student Research Grant to Ingalls. Geochronological analyses were enabled by National Science Foundation grant EAR-0923831 awarded to Colman and Rowley.

REFERENCES CITED

High-elevation Lhasa block throughout the Cenozoic

