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Abstract

The diffusion kinetics of He and Ne in four amphibole specimens have been experimentally determined using stepwise
degassing analysis of samples previously irradiated with energetic protons, and Arrhenius relationships have been fit to these
data. The primary finding is that He and Ne diffusivities are systematically lower in amphiboles that have higher concentra-
tions of unoccupied ring sites, suggesting that unoccupied ring sites act as traps for migrating noble gases. Ring site influence
of noble gas diffusivity in amphiboles has substantial implications for 40Ar/39Ar thermochronology applied to these phases
and the efficiency of noble gas recycling in subduction zones. These findings are consistent with the correlation between noble
gas solubility and the concentration of unoccupied ring sites in amphibole (Jackson et al., 2013a, 2015) but are inconsistent
with the ionic porosity model for noble gas diffusion (Fortier and Giletti, 1989; Dahl, 1996). Rather, these findings suggest
that the topology of ionic porosity and absolute volume of ionic porosity compete in determining the rate at which noble gases
diffuse.
� 2015 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Much of our understanding of noble gas diffusion in
amphibole is motivated by its utility to thermochronology.
Harrison (1981) conducted hydrothermal experiments
where Ar was extracted from hornblende and pargasite
samples under controlled temperatures and durations.
The data from both minerals define an Arrhenius relation-
ship that has become the standard for estimating Ar closure
temperatures (Tc, Dodson, 1973) for amphiboles,
independent of composition. The uniform adoption of a
single Arrhenius relationship for a mineral as chemically
diverse as amphibole, however, has been questioned (e.g.,
O’Nions et al., 1969; Berry and McDougall, 1986; von
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Blanckenburg and Villa, 1988; Dahl, 1996). For example,
it has been shown that chemically distinct amphiboles from
single host rocks or single outcrops also have distinct
40Ar/39Ar ages, presumably related to their differing reten-
tion of Ar along a common cooling trajectory (Harrison
and Fitzgerald, 1986; Onstott and Peacock, 1987; Dahl,
1996). From these observations, geochemical parameters,
such as Fe# (Fe/(Fe + Mg), atomic), have been suggested
to control the mobility of noble gases in amphibole. The
recognition of strong compositional control on Ar
diffusivity hinders applications of amphibole 40Ar/39Ar
thermochronometry without knowledge of sample-specific
kinetics and more general predictions of noble gas retentiv-
ity in amphibole during subduction.

The rate of noble gas diffusion in amphibole affects the
interpretation of 40Ar/39Ar measurements and the efficiency
of noble gas subduction. For 40Ar/39Ar measurements,
applicable Arrhenius relationships are required to calculate
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closure temperatures for amphibole and to place 40Ar/39Ar
data in a metamorphic or magmatic context (e.g., Harrison
and McDougall, 1980; Zeitler, 1985; Hacker and Wang,
1995). While for subduction, it is key to quantify the
diffusivity of noble gases in amphibole and other major
hydrothermal phases so that the rate of noble gas exchange
between minerals and fluids can be calculated along slab
geotherms. When combined with measurements of noble
gas solubility, these data for hydrothermal phases can be
used to model the distribution of noble gases between fluids
and minerals during in slab environments, ultimately allow-
ing for the prediction of recycling efficiency and elemental
fractionations of noble gases associated with subduction
zones.

Compositional controls on noble gas diffusion in amphi-
bole have been modeled using the concept of ionic porosity
(Fortier and Giletti, 1989; Dahl, 1996). Ionic porosity is the
fraction of the unit cell not occupied by ions; essentially
the amount of ‘free space’ between the atoms in a mineral.
The basis for this model is the broad correlation between
diffusivity of O and Ar and ionic porosity for a range of sil-
icates, including amphibole (Dowty, 1980; Fortier and
Giletti, 1989). The range in ionic porosity for natural
amphiboles is large (�3.5%), reflecting the extreme compo-
sitional diversity within the amphibole family (Dahl, 1996).
The largest factor controlling the range of ionic porosity
within the amphibole family is related to the A-site, or ring
site. The ring site is a large radius site that can be com-
pletely occupied by large radius cations (Na and K) in
endmembers such as richterite and pargasite or completely
unoccupied in endmembers such as actinolite or glauco-
phane. This exchange alone accounts for a large proportion
of the total range in ionic porosity within the amphibole
family. For example, between the endmembers edenite
and hornblende sensu stricto exchange of octahedral Mg
and ring site-hosted Na with octahedral Al and an unoccu-
pied ring site accounts for a 2.5% increase in ionic porosity.

Recent measurements indicate noble gases in amphi-
boles are located in the ring sites and that the solubility
associated with the ring site is large compared to other min-
erals, such as olivine and pyroxene (Heber et al., 2007;
Jackson et al., 2013b, 2015). This implies that the porosity
associated with an unoccupied ring site is fundamentally
different compared to the remaining porosity within amphi-
boles in that noble gas atoms have an affinity for the poros-
ity of the ring site, i.e. ring sites are relatively low energy
locations for noble gases. The suggestion that not all poros-
ity should be considered equal also draws support from cor-
relations between He retentivity and alpha particle recoil
damage to apatite and zircon lattices (Shuster et al., 2006;
Guenthner et al., 2013). This correlation has been explained
as the consequence of the relative affinity of He atoms for
damaged locations within mineral lattices (Shuster et al.,
2006; Shuster and Farley, 2009) or increased tortuosity in
anisotropic lattices (Guenthner et al., 2013).

Despite the importance of ring site porosity for noble
gas solubility in amphibole, its effects on noble gas diffusiv-
ity have not been systematically investigated. Here we test
the effect of increasing the ring site porosity on He and
Ne diffusion in amphibole. Arrhenius relationships are
derived for four different amphibole compositions with a
wide range of ring site porosity using a step-heating
approach. The results of these experiments show that He
and Ne diffusion is uniformly slower in amphiboles with a
high concentration of unoccupied rings, supporting the
hypothesis that low energy locations within minerals act
to increase their retentivity. This result is the opposite as
predicted by the simple application of ionic porosity-
diffusion models and provides insight into how alpha recoil
damage affects mineral lattices.

2. METHODS

2.1. Starting materials

Gem-quality amphiboles were used as the starting mate-
rials for the diffusion experiments. Major element composi-
tions were determined by electron microprobe analysis on
polished grain mounts (Brown University, Cameca
SX-100). Analytical parameters were as follows: 15 kV
accelerating voltage, 10 nA beam current, and a 10 lm
beam. The PAP correction was applied. All specimens were
analyzed 50 times. The averages and standard deviations of
those analyses are reported in Table 1. Cation stoichiome-
try is calculated assuming a charge balance of 23 oxygens.
Ring site occupancy is calculated by assigning all Ca to
the M4 site. Sodium is partitioned to the M4 site to satisfy
the requirement of two M4 cations per functional unit. The
remaining Na and all K are partitioned to the ring site.
Ring site occupancy is taken as the sum of Na and K
cations partitioned to the ring site. Other large radius ele-
ments, such as Rb and Ba, may also enter the ring site,
but these are trace elements and should not significantly
affect the occupancy calculation. All specimens were stud-
ied for He and Ne solubility in Jackson et al. (2013a) and
have been reanalyzed for their major element chemistry.

2.2. Helium and Neon diffusion experiments

To produce a spatially homogeneous distribution of 3He
and 21Ne, amphibole crystals were irradiated with a beam
of 220 MeV (incident energy) protons for a continuous
5 h period at the Francis H. Burr Proton Therapy Center
at the Massachusetts General Hospital (Shuster et al.,
2004). The samples were irradiated with a total fluence of
�8.5 � 1015 protons cm�2. In a previous study, quartz sam-
ples irradiated with fluences of 0.2 � 1015 and 6.2 � 1015

protons cm-2 had similar diffusion kinetics of both He
and Ne after each irradiation, suggesting that these fluences
did not induce significant amounts of radiation damage in
quartz (Shuster and Farley, 2005a). Although we cannot
completely exclude the possibility that some damage in
the amphiboles resulted from the proton irradiation, we
assume that the proton energy and fluence used in the pre-
sent study did not introduce an amount of crystal damage
that would have significantly influenced noble gas diffusiv-
ity. Following irradiation, the amphibole crystals were
gently crushed and the resulting grains were hand-picked
for fragments that were as equi-dimensional as possible
and of sufficient size for precise analysis. Images of the



Table 1
Major elements composition of amphiboles.

wt.% Clear pargasite Richterite Tremolite Green actinolite

Avg. 1r

SiO2 47.45 0.18 56.76 0.17 57.30 0.18 54.22 0.23
Al2O3 12.15 0.09 1.55 0.06 0.92 0.11 5.87 0.07
TiO2 0.11 0.01 0.15 0.01 0.08 0.01 0.24 0.01
MgO 21.67 0.14 23.92 0.12 22.77 0.18 22.59 0.11
FeO 0.23 0.03 0.09 0.02 2.85 0.18 0.05 0.02
MnO 0.01 0.02 0.03 0.02 0.08 0.03 0.11 0.03
CaO 11.81 0.05 7.58 0.05 12.74 0.07 13.08 0.07
Na2O 3.75 0.14 5.29 0.14 0.62 0.08 0.62 0.05
K2O 0.53 0.02 1.96 0.02 0.23 0.03 0.56 0.01
F 1.30 0.08 0.92 0.06 0.52 0.11 0.71 0.06
Cl 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.00
Total 99.02 98.27 98.11 98.05

Cation stoichiometry

Si 6.59 0.02 7.83 0.01 7.89 0.02 7.42 0.02
Al (IV) 1.41 0.02 0.17 0.01 0.11 0.02 0.58 0.02
Al (VI) 0.57 0.02 0.08 0.01 0.03 0.01 0.37 0.02
Ti 0.01 0.00 0.02 0.00 0.01 0.00 0.02 0.00
Mg 4.48 0.02 4.92 0.02 4.67 0.03 4.61 0.02
Fe+2 0.03 0.00 0.01 0.00 0.33 0.02 0.01 0.00
Mn 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00
Ca 1.76 0.01 1.12 0.01 1.88 0.01 1.92 0.01
Na (M4) 0.24 0.01 0.88 0.01 0.12 0.01 0.08 0.01
Na (ring) 0.77 0.04 0.53 0.04 0.04 0.02 0.09 0.02
K (ring) 0.09 0.00 0.34 0.00 0.04 0.00 0.10 0.00
Unoccupied (ring) 0.14 0.04 0.12 0.03 0.92 0.02 0.82 0.02

Notes: Cation stoichiometry calculated assuming charge balance of 23 O.
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grains are included as Supplementary Material. These
aliquots were then loaded into Pt–Ir tubes in direct contact
with a type-K thermocouple under ultra high vacuum.
Samples were then incrementally heated using a feedback-
controlled 150 W diode laser (k = 810 ± 10 nm) focused
onto the packet through a sapphire viewport. The molar
quantities of 3He and 21Ne released in each step-heating
increment were quantified using a MAP215-50 mass spec-
trometer in the Noble Gas Thermochronometry Lab of
Berkeley Geochronology Center. The incremental heating
data and average grain size are reported in the Supplemen-
tary Tables for each analyzed phase. Step-degassing meth-
ods are described in detail in Tremblay et al. (2014).

2.3. Calculation of diffusion coefficients

For each degassing increment we calculate the diffusion
coefficient (D) normalized to the square of the characteristic
length scale (a2) using the equations of Crank (1975) for
spherical geometry following the algorithm of Fechtig and
Kalbitzer (1966). Activation energies (Ea) and normalized
frequency factors (Do/a

2) are calculated from linear regres-
sions of ln(D/a2) against inverse absolute temperature for
each gas-amphibole combination. By taking this approach,
we assume a uniform distribution of noble gases prior to
the step-degassing experiment. This assumption is well sup-
ported by previous studies of He and Ne diffusivity in apa-
tite and quartz samples, and in cases where another
naturally occurring isotope (e.g., 4He) was known indepen-
dently to have a spatially uniform distribution (Shuster and
Farley, 2005a and Shuster and Farley, 2005b). Errors
reported for fitted parameters are strictly associated with
the regression statistics and are 1r. Absolute frequency fac-
tors were determined by multiplying Do/a

2 by the square of
the characteristic length scale. Characteristic length scales
are calculated as the radius of a sphere with the same sur-
face area/volume ratio as the analyzed grain. Results of
the Arrhenius relationship fitting are presented in Table 2.

Confidence limits on Arrhenius relationships are derived
using a Monte-Carlo approach. Random values are chosen
for each Ea and Do pair according to a normal distribution
around the best-fit value after accounting for any covari-
ance in parameter uncertainty using a Cholesky decomposi-
tion. The randomly chosen coefficients are then used to
calculate an Arrhenius relationship over the given tempera-
ture interval. This process was repeated 100 times for each
amphibole-gas combination. Confidence limits are then cal-
culated as a function of temperature by taking the standard
deviation (1r) of predicted diffusivities at each temperature.

3. RESULTS

Arrhenius relationships are shown for each amphibole-
gas combination in Figs. 1–4. Plots of fitting residuals
versus cumulative release and the time–temperature path
for step-degassing are given as subpanels (B) and (C) in
Figs. 1–4, respectively. Data selected for fitting Arrhenius
relationships are highlighted by a circle about the data
point marker (dot). The fitted data were chosen to maxi-
mize the number of continuous degassing increments that
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precede clear departures from linear Arrhenius arrays at
high temperature. The fits of He data include the large
majority (>95%) of measured data points and gas analyzed.
Neon fits are primarily based on mid-range temperature
increments and significantly less of the total gas released
(�10–40%). Higher temperatures are required to extract
measureable quantities of Ne compared to He, and follow-
ing this, 21Ne fits do not include the lowest temperature
extractions used to regress the He data. Some low temper-
ature increments do yield detectable 21Ne, but these quanti-
ties are small and do not display any clear correlation with
temperature and are not used for fitting purposes. These
lower temperature increments are likely affected by out-
gassing of relatively small radius domains (e.g., adhering
dust), biasing D/a2 to higher values. The highest tempera-
ture increments (>�1000 �C) are repeatedly associated with
relatively large and irregular releases of 21Ne. These higher
temperature increments, and any subsequent lower temper-
ature increments, are not used for fitting purposes. Despite
the lower fraction of analyzed gas for 21Ne compared to
3He, these fits incorporate a sufficient number of measure-
ments and range in temperature to determine Arrhenius
relationships (neglecting 21Ne release from green actinolite,
discussed below). Data chosen for fitting were collected as
consecutive degassing increments along the prescribed
time–temperature path, neglecting a single data point asso-
ciated with the release of Ne from the tremolite specimen.
All degassing experiments also yielded reproducible D/a2

values at multiple, isothermal steps for 3He and 21Ne. This
reproducible behavior is consistent with a uniform distribu-
tion of 3He and 21Ne in the measured grains.

The 21Ne release pattern of the green actinolite specimen
is erratic, precluding fitting an Arrhenius relationship with
confidence. The exact reason for the erratic behavior is not
clear as the 3He release from the same specimen is well
behaved and overlaps in temperature with those associated
with the erratic 21Ne releases. Nonetheless, it is clear that
21Ne diffusivity in the green actinolite at moderate temper-
atures is similar to those measured for the other unoccupied
ring site-rich amphibole (tremolite) and distinctly lower
than measured for occupied ring site-rich amphiboles (clear
pargasite and richterite).

All Arrhenius relationships with corresponding confi-
dence intervals are plotted in Fig. 5. These relationships
are plotted as absolute diffusivity to facilitate inter-
amphibole comparison and comparison with the Ar Arrhe-
nius relationship reported by Harrison (1981). Helium is
uniformly the most mobile in amphibole, followed by Ne
and Ar. Activation energies increase from He to Ar, and
the differences in diffusivity between amphiboles with
majority occupied ring sites and majority unoccupied ring
sites are similar for both He and Ne.

4. DISCUSSION

Our primary finding is that He and Ne diffusion is sys-
tematically slower in amphiboles with high concentrations
of unoccupied ring sites compared to amphiboles with
low concentrations of unoccupied ring sites (Fig. 5). This
result is counterintuitive because amphiboles with higher
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concentrations of unoccupied ring sites have higher ionic
porosity. Ionic porosity correlates linearly with log10 Ar dif-
fusivity at a given temperature for a range of minerals types
(Fortier and Giletti, 1989), such that, all other variables
being constant, one would expect noble gases to diffuse
more rapidly through an amphibole with a high concentra-
tion of unoccupied ring sites (Dahl, 1996). Our observation
that He and Ne diffuse more slowly through amphiboles
with unoccupied ring sites suggests that as noble gases
migrate through the amphibole lattice and encounter a ring
site, their mobility is effectively hindered, implying that ring
sites, as high solubility features in amphibole, operate as
traps for noble gases. This result is qualitatively consistent
with modeling the effects of nano-scale pores on Ar diffu-
sion in quartz, where higher Ar solubility in pores and
higher pore concentrations act to progressively slow bulk
Ar diffusion (Watson and Cherniak, 2003).

The observed magnitude of the ring site trapping effect is
significant. Comparing the two amphiboles with the majority
of their ring sites occupied to the two amphiboles with the
majority of their ring sites unoccupied, we observe a 10–30�
increase in He and Ne diffusivity at 500 and 700 �C, respectively
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comparing amphiboles with the majority of ring sites occupied and
unoccupied.
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(dashed lines vs. dotted lines in Fig. 5). Increasing the Do

value reported by Harrison (1981) for Ar diffusion in
amphibole by 30� lowers the corresponding Tc value by
74 �C (500 lm grain cooling at 100 �CMyr�1; Dodson, 1973).
Experiments focused on He and Ne dissolution into amphi-
bole highlight the importance of ring sites in controlling the
solubility of noble gases (Jackson et al., 2013a, 2015). These
results demonstrate the relative affinity of noble gases, as
large radius, neutrally charged elements, for large radius,
neutrally charged sites, such as the ring site. Interestingly,
these experiments demonstrate that He is consistently more
soluble than Ne in amphibole. The fact that He and Ne dif-
fusion are similarly hindered by the presence of unoccupied
ring sites suggests that the activation energies associated
with He and Ne migrating from the ring site and into the
activated state before migrating to an adjacent site are sim-
ilar despite their differing solubility (Gautheron et al., 2009;
Flowers et al., 2009).

4.1. In vacuo heating of amphibole

Previous efforts focused on understanding the behavior
of amphibole during in vacuo heating have demonstrated
that amphibole undergoes structural decomposition near
1000 �C (Gaber et al., 1988; Lee et al., 1991; Wartho
et al., 1991; Lee, 1993). The erratic release patterns at high
temperatures are consistent with these previous studies, but
it is worth noting that lower temperature data points col-
lected following the high temperature increments tend to
yield diffusivities similar to those collected during the pro-
grade portion of the time–temperature path. In vacuo heat-
ing below 900 �C is associated with H-loss and oxidation of
Fe+2 but not structural changes (Gerling et al., 1966; Gaber
et al., 1988; Lee et al., 1991; Wartho et al., 1991). The
well-behaved nature of He releases across a wide range of
temperatures (300–900 �C), particularly for green actinolite
and tremolite, which retain He to high temperatures, argues
strongly against H-loss or other effects at low temperature
significantly affecting noble gas diffusion kinetics reported
here. Moreover, our diffusion data for He in green actino-
lite and tremolite specimens (majority unoccupied ring
sites) compare well with previous measurements of He dif-
fusion in hornblende that extend to lower temperatures
than those explored here (Lippolt and Weigel, 1988), and
the amphiboles studied here have low Fe#, minimizing
the amount of oxidative stress that can be generated.

4.2. Comparison to alpha particle recoil damage in apatite

and zircon

The concept of low energy sites within minerals hinder-
ing noble gas mobility gains support from studies focused
on the effect of alpha particle recoil damage on He mobility
in apatite and zircon (Shuster et al., 2006; Shuster and
Farley, 2009; Flowers et al., 2009; Guenthner et al.,
2013). Helium (4He) is produced by alpha decay, most
prominently along the U- and Th-series decay chains, and
these decays cause lattice damage, such as zones that are
depleted in atoms, mainly resulting from the recoil of the
parent nuclide (e.g., Trachenko et al., 2002). It has been
demonstrated that He diffusivity progressively decreases
in apatite and zircon as the concentration of alpha particle
recoil damage increases, taking [4He] as a proxy for recoil
damage (Shuster et al., 2006; Guenthner et al., 2013).
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Fig. 6. Compilation He diffusion results for zircon, apatite, and
amphibole plotted as a function of 4He concentration (a proxy for
alpha radiation damage density for apatite and zircon) or unoc-
cupied ring site density (amphibole). Plotted diffusivities are
calculated from reported Arrhenius relationships at a constant
temperature. The temperatures selected for the zircon, apatite, and
amphibole comparisons are 373, 473, and 773 K, respectively.
These temperatures were selected to compare the minerals at
temperatures where experimental data were collected and are
robust; the comparisons are not sensitive to the chosen tempera-
tures. Zircon data are plotted as a single group, irrespective of
mineralogical orientation. The vector predicted by the ionic
porosity model for the dependence of Ar diffusion on the
concentration of unoccupied ring sites is also plotted for compar-
ison (Fortier and Giletti, 1989).
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Fig. 6 compares the rate of He diffusion at a given tem-
perature to the concentration of 4He in apatite and zircon
and the concentration of unoccupied ring sites in amphi-
bole. It is clear that alpha particle recoil damage and unoc-
cupied ring site concentration both correlate with lower He
diffusivity according to a power law relationship and that
the slopes of the correlations are of similar magnitude.
We also plot in Fig. 6 the vector predicted by the ionic
porosity model for the dependence of Ar diffusion on the
concentration of unoccupied ring sites (Fortier and
Giletti, 1989). Our observations demonstrate that ionic
porosity with relatively high associated noble gas solubility
acts to slow, rather than hasten, noble gas diffusion
(Watson and Cherniak, 2003). The concentration of unoc-
cupied ring sites in amphibole is high, even compared to zir-
cons with large accumulations of radiation damage.
Guenthner et al. (2013) observed a sharp increase in He dif-
fusivity in zircon for samples with large accumulations of
radiation damage, which they attributed to an interconnec-
tion of alpha particle recoil damage (Salje et al., 1999;
Ketcham et al., 2013). The data associated with this regime
in zircon are plotted as crossed box symbols in Fig. 6.
Concerning amphibole, the lattice distribution of ring sites
in amphibole ensures that they remain isolated from each
other regardless of their overall concentration. If He diffu-
sion is slowed by unoccupied ring sites, noble gas traps are
potentially effective up to extreme concentrations, depend-
ing on their distribution and size.
The correlation between He diffusivity and unoccupied
ring site concentration in amphibole supports the hypothe-
sis that alpha decay events generate low energy traps in
minerals (Shuster et al., 2006), at least in a proportion of
decay events. In minerals with isotropic diffusive behavior,
such as apatite, the generation of low energy sites may be
the most significant consequence of low dose alpha
radiation, whereas in minerals with anisotropic diffusive
behavior, such as zircon, low energy site generation may
compete with other effects (e.g., tortuosity; Guenthner
et al., 2013) in determining the net effect of alpha radiation.

4.3. Influence of ring site traps on noble gas recycling to

Earth’s mantle

Mounting evidence suggests that atmospheric noble
gases, despite their geochemically inert behavior, are recy-
cled into deep into subduction zones and ultimately into
Earth’s mantle (e.g., Nagao and Takahashi, 1993;
Matsumoto et al., 2001; Holland and Ballentine, 2006;
Sumino et al., 2010; Hopp and Ionov, 2011; Kendrick
et al., 2011, 2013; Mukhopadhyay, 2012; Parai et al.,
2012; Tucker et al., 2012; Peto et al., 2013; Parai and
Mukhopadhyay, 2015). This evidence raises the possibility
that noble gases can potentially serve as elementally and
isotopically diverse tracers of volatile element exchange
between Earth’s exterior and interior. Development of these
tracers will allow further insight into the origins of fluids
that flux the mantle wedge and the time-integrated history
of volatile recycling.

Experiments directed toward understanding the possible
carrier phases responsible for recycling noble gases, how-
ever, remain relatively sparse (e.g., Zaikowski and
Schaeffer, 1979; Podosek et al., 1981; Jackson et al.,
2013a, 2015). Subducting slabs represent the primary flux
of mass from Earth’s surface to interior, leading to the
hypothesis that atmospheric noble gases initially present
in slab materials are at least partially retained during the
subduction process, despite massive fluid loss to the forearc
and overlying mantle wedge (e.g. Moore and Vrolijk, 1992;
Schmidt and Poli, 1998). The ability of a phase within a
subducting slab to recycle noble gases is related to its affin-
ity for and retentivity of noble gases, where higher solubil-
ity and lower diffusivity favor recycling over release.

Amphibole is a common phase in altered oceanic crust
and is stable in subducting slabs to �3 GPa or �100 km
depth (Ito et al., 1983; Schmidt and Poli, 1998; Carlson,
2003). Furthermore, noble gases are relatively soluble in
amphibole (Jackson et al., 2013a, 2015), and amphibole is
also anomalously retentive of Ar, and by extension Kr
and Xe, compared to other common crustal minerals. The
Ar Tc value for amphibole is 600 �C (500 lm grain cooling
at 100 �CMyr�1; Dodson, 1973). Muscovite, biotite, and
plagioclase have Tc values that are �50, �300, and
�400 �C lower than amphibole for equivalent conditions
(see Baxter, 2010 for a compilation). It is likely that the
high Tc value associated with amphibole reflects, at least
to a degree the trapping effects of ring sites. Taken together,
these Tc determinations suggest that amphibole is a
potentially important carrier phase of noble gases during



72 C.R.M. Jackson et al. /Geochimica et Cosmochimica Acta 172 (2016) 65–75
subduction, further supported by the fact that amphiboles
stabilized in subducting crust tend to be rich in unoccupied
ring sites (e.g., glaucophane), further enhancing noble gas
solubility and retentivity. These properties of amphibole
warrant its study as an endmember case for noble gas trans-
port by minerals in subduction zones.

We can estimate the net effect of ring site occupancy on
Ne retention in an amphibole-rich region of a subducting
slab by combining our experimental observations with a
1-D diffusion model. We model Ne loss using the mean
value of diffusive parameters for richterite and clear parga-
site (Table 2; unoccupied ring site-poor) and compare the
results to a hypothetical unoccupied ring site-rich amphi-
bole with a D0 value that is 30� higher, more analogous
to amphibole in subducing slabs. For this calculation, we
do not compare tremolite to richterite or clear pargasite
because they have differing values of Ea, which complicates
the comparison and obscures the isolated effect of ring site
occupancy. Increasing the concentration of traps in a min-
eral should act to increase the activation energy for diffu-
sion so long as the traps are not interconnected (Shuster
et al., 2006), making the diffusive offsets we observe at high
temperatures lower limits for lower temperature scenarios.
We note that there is no clear offset of Ea values between
amphiboles with high and low concentrations of unoccu-
pied ring sites. Our model calculates the diffusive loss of
Ne initially hosted in a cylindrical amphibole grain
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Fig. 7. Implications of Ne diffusion kinetics to modeling Ne extraction of
temperature path of oceanic crust during subduction of S. Philippines plat
experience a sharp increase in temperature upon coupling with the mantle
relatively cool up to the maximum pressures associated with amphibole
crust regardless of the availability of unoccupied ring sites once the mant
enough that significant amounts of Ne can be retained. Here, unoccupied
the efficiency of Ne recycling.
(200 lm radius) that is subjected to an intermediate
subduction zone geotherm (S. Philippines, descent
rate = 62 km Ma�1, Syracuse et al., 2010) using the kinetic
parameters described above. We do not account for any
dissolution-precipitation processes affecting the size or con-
centration of noble gases in the modeled amphibole.

The system comprises an amphibole grain surrounded
by an effectively infinite porosity that serves as a sink for
noble gases. By assuming a large porosity surrounding
amphibole, we isolate the role of diffusion in controlling
noble gas exchange with its environment. Smaller amounts
of porosity allow significant Ne fugacity build in the fluid,
which acts to limit the loss of Ne from minerals according
to their solubility (Baxter, 2003; Smye et al., 2013). Any Ne
that is partitioned into the fluid has the potential to be lost
from the slab, depending on the fluid mobility.

The results of this modeling are presented in Fig. 7.
Black lines correspond to scenarios for amphiboles that
are located at the MOHO of the subducting oceanic
lithosphere, and gray lines correspond to scenarios for
amphiboles that are located in the extrusive layer of oceanic
crust. Together, these bracket the potential geotherms that
a crustal amphibole would experience during subduction of
the S. Philippines plate. Increasing Do of Ne by 30� extends
the point of initial Ne release deeper by �10 km for the
extrusive scenarios and by �20 km for the MOHO scenar-
ios. Following the point of initial release, all scenarios
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experience a zone of partial retention. For the extrusive sce-
narios (gray lines), the depth interval of partial retention is
relatively narrow, reflecting the rapid increase in tempera-
ture experienced by the upper regions of the slab as it cou-
ples with the mantle wedge. Both amphibole compositional
groups in the extrusive scenarios effectively experience com-
plete Ne extraction at similar depths (�80 km), or equiva-
lently, pressures (2.2 GPa). Amphiboles are particularly
retentive of noble gases compared to other crustal minerals,
suggesting that the Ne initially hosted by other mineral
phases in the extrusive section of oceanic crust will be lost
to fluids at depths shallower than those modeled here.
Thus, while the compositional effects on Ne diffusion in
amphibole are large, in all extrusive scenarios Ne becomes
sufficiently mobile to afford complete extraction from the
upper regions of a subducting slab by a migrating fluid
phase at relatively shallow pressures. Heavier noble gases,
Ar, Kr, and Xe, will diffuse slower than Ne and be less
easily extracted along the same geotherm, providing a
mechanism for preferentially recycling heavier noble gases
and fluxing the mantle with fluids enriched in lighter noble
gases. The implications of such a mechanism for noble gas
systematics will be explored in a sister manuscript.

More deeply seated amphiboles (black lines) are ther-
mally insulated from the mantle wedge, and consequently,
experience a much smaller increase in temperature during
subduction. This lower temperature geotherm allows
amphibole to retain significant quantities of Ne to the max-
imum pressures associated with amphibole stability
(3.0 GPa; Forneris and Holloway, 2003). Unoccupied ring
site-poor amphiboles still experience �50% extraction of
their initial Ne, despite the thermal insulation provided by
oceanic crust. Again, this implies a high mobility of Ne in
other, less retentive phases also located deeper in the ocea-
nic crust. Unoccupied ring site-rich amphiboles retain
the large majority of their initial Ne, demonstrating that the
increased retentivity associated with ring site traps has the
potential to significantly enhance the efficiency of Ne recy-
cling in cooler sections of subducting oceanic crust. Taken
together, this suggests that amphibole can transport noble
gases (Ne–Xe) to and potentially past depths of arc magma
genesis (120 ± 40 km; Tatsumi, 2005). Further investigation
is required to understand the fate of amphibole-born noble
gases at pressures exceeding the amphibole stability field.

We focus here on Ne because of its potential to be
recycled and the scope of the reported data. Helium is lost
from Earth’s atmosphere and is extremely mobile, severely
limiting its concentration in subducted slab materials. Our
data do not extend to heavier noble gases (Ar–Xe), but
given the fact that both He and Ne are similarly affected
by unoccupied ring sites, it is likely that the model applies
to the heavier noble gases as well, i.e. unoccupied ring
site-rich amphiboles enhance noble gas recycling efficiency
in general. We note that where amphibole is scarce or where
other high noble gas solubility phases are present in slabs,
amphibole will not control the bulk lithology behavior for
noble gases. Nonetheless, the general modeling approach
taken here can be extended to other minerals provided
the appropriate noble gas solubility and diffusivity data
are available.
5. CONCLUSIONS

We report measurements of He and Ne diffusivity for a
set of amphiboles with a large range of unoccupied ring site
concentrations. These results demonstrate that low energy
sites within amphibole act to hinder the diffusive mobility
of He and Ne. Furthermore, this finding confirms that gross
ionic porosity, alone, cannot account for the diffusion sys-
tematics of noble gases in amphibole. A comparison of
amphibole, zircon, and apatite indicates that greater densi-
ties of alpha particle recoil damage and unoccupied ring
sites each correlate with lower He diffusivity, and with sim-
ilar relationships despite the different manifestation of
noble gas ‘‘traps” in these minerals. Application of the
observed diffusion systematics to a subduction model for
oceanic crust suggests the following: (1) Ne is sufficiently
mobile to be efficiently extracted from all amphiboles in
the upper-most sections of subducted crust and (2) along
cooler geothermal gradients associated with the lower-
most oceanic crust, unoccupied ring site-rich amphiboles
are substantially more retentive of Ne compared to unoccu-
pied ring site-poor amphiboles, allowing for near-complete
retention of Ne up to the maximum stability of amphibole.
As Ne is a relatively mobile noble gas, this later result
implies that large fractions of heavier noble gases can be
retained in lower oceanic crust as well. More generally,
our results suggest that the topology of ionic porosity com-
petes with the absolute volume of ionic porosity in control-
ling the rate of noble gas diffusion in minerals.
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