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Martian Surface
Paleotemperatures from

Thermochronology of Meteorites
David L. Shuster1* and Benjamin P. Weiss2.

The temporal evolution of past martian surface temperatures is poorly
known. We used thermochronology and published noble gas and petrographic
data to constrain the temperature histories of the nakhlites and martian
meteorite ALH84001. We found that the nakhlites have not been heated to
more than 350-C since they formed. Our calculations also suggest that for
most of the past 4 billion years, ambient near-surface temperatures on Mars
are unlikely to have been much higher than the present cold (G0-C) state.

Daily mean equatorial temperatures on Mars are

close to 215 K. Surface geomorphic evidence of

the flow of liquids, weathering minerals indica-

tive of liquid/rock interactions, and the enrich-

ment of heavy isotopes of several atmospheric

species have led to suggestions that early Mars

was significantly warmer, with temperatures

possibly remaining above 273 K for extended

periods of time (1). On the basis of crater

counting statistics, the colder, drier conditions

are thought to have emerged at È3.7 billion

years ago (Ga), with large (È108 to 109 years)

uncertainties (2). The growing geochemical and

petrographic data set for martian meteorites (3)

provides an opportunity to constrain the mar-

tian paleoclimate using multiple independent

samples. We used noble gas thermochronom-

etry of meteorites as an indicator of the evo-

lution of surface temperatures on Mars.

K/Ar and 40Ar/39Ar dating studies have

been conducted on all seven known nakhlites

(4) and on martian meteorite ALH84001 (5, 6).

Fifteen K/Ar analyses on the nakhlites all give

ages of È1.3 Ga, which are nearly identical

to crystallization ages specified by the Rb/Sr,

U/Pb, and Sm/Nd chronometers (7) and much

older than the 11 million years ago (Ma) age of

ejection from Mars, as specified by cosmic ray

exposure dating (8, 9). (U-Th)/He dating of the

nahklites meteorites Nakhla, Lafayette, and

MIL03346 (10, 11) has measured similarly

ancient (È0.8 to 1.2 Ga) ages. The coincidence

of the K/Ar and (U-Th)/He ages with the other

chronometers suggests that the nakhlites have

experienced no major heating since they

formed. Similarly, the ancient 4 Ga 40Ar/39Ar

age (6) and 4 Ga U/Pb apatite age (12) for

ALH84001 suggests that this meteorite, which

has Rb/Sr and Sm/Nd crystallization ages of

4.5 Ga and a cosmic ray exposure age of 15 Ma

(13), has not experienced any major heating

since 4 Ga. This is generally consistent with

(U-Th)/He dating of ALH84001 phosphate,

which gives a wide range of ages between

0.1 and 3.5 Ga (14). Like the nakhlites, the
40Ar/39Ar age of Chassigny is È1.3 Ga and is

close to its Sm/Nd and Rb/Sr crystallization

ages (6, 13). 40Ar/39Ar ages for most shergot-

tites are ambiguous because of significant abun-

dances of trapped Ar (6, 13).

Using whole-rock 39Ar release data of

Swindle and Olson (15) and following the

methods of (5, 16), we estimated the tempera-

ture dependence of the Ar diffusion coefficient

D(T ) through the feldspar in Nakhla and

Lafayette, assuming a spherical diffusion do-

main geometry (17). We first considered

Swindle and Olson_s Nakhla subsample 1. We

assumed that the colinearity observed for the

first È80% of the released 39Ar (Fig. 1)

indicates that the diffusion of Ar in Nakhla is

thermally activated over this range. We also

assumed that the presence of distinct arrays

clearly separated by breaks in slope (Fig. 1)

indicates that multiple diffusion domains are

present. From this, we identified three (or

possibly even four) primary arrays from the
39Ar data and adopted the interpretation of

(15) that the first three domains Ethe low-

retentivity domain (LRD) and the one or two

high-retentivity domains, which we will refer

to as HRD and HHRD^ likely represent

iddingsite (LRD) and predominantly potassium

feldspar admixed with plagioclase (HRD and

HHRD). The final array, composed of the final

È20% of gas released, appears to be from a

phase (probably clinopyroxene) implanted

with recoiled 39Ar (15, 18).

We characterized the spatial distribution of

radiogenic 40Ar (40Ar*) and the Ar diffusion

kinetics in the HRD alone. The HRD corre-

sponds to the È1.3 Ga 40Ar/39Ar plateau age

identified in (15). We calculated a diffusion

domain model by assuming that the neutron-

induced 39Ar distributions were initially uniform

within two distinct domains. Gas was not per-

mitted to exchange between the domains. We

derived the following diffusion parameters for

the two-domain (LRD and HRD only) model

for the HRD of Nakhla: activation energy E
a
0

117 T 5.4 kJ molj1 and ln(D
o
/a2) 0 5.7 T

0.9 ln(sj1) for diffusivity at infinite tempera-

ture D
o

and diffusive length scale a. These are

in good agreement with diffusion parameters

estimated for terrestrial potassium feldspars

(19). Nearly identical results were obtained for

the nakhlite Lafayette and another Nakhla

subsample (fig. S1, A and B). Similar Ewithin

a factor of È1.2 and È2.4 for E
a

and ln(D
o
/a2),

respectively^ values for the HRD were also

obtained for a subset one-domain (HRD only)

regression (20) and a three-domain (LRD,

HRD, and HHRD) model, indicating that the

inferred diffusion kinetics are not strongly

sensitive to the form of the domain modeling

(21).

In the following calculations, we assume

that this Arrhenius relation and corresponding

diffusive length scale a have held for the

nakhlites_ HRD since 1.3 Ga (22). The model
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LRD diffusion kinetics predict essentially no
40Ar* retention over geologic time, which is

consistent with the zero age 40Ar/39Ar in the

first È3% of extracted 39Ar observed by (15).

With the two-domain model (Fig. 1) and a

numerical solution to the radiogenic production/

diffusion equation described by (5, 23) using

a pre-atmospheric meteorite radius of 0.2 m

(8), we simulated the expected 40Ar* dis-

tributions within the sample after various

thermal perturbations. The model 40Ar* dis-

tributions were calculated for the HRD and

then passed through a simulated degassing

experiment to produce a set of 40Ar* release

fractions (Fig. 2).

Our calculations demonstrate that only

È1% of the ingrown 40Ar* has been diffusively

lost from the HRD of Nakhla and Lafayette

since 1.3 Ga. From a similar analysis using the

Ar release data of Bogard and Garrison (6), we

confirm our conclusion (5) that less than 8% of

the ingrown 40Ar* has been diffusively lost

from the HRD of ALH84001 since 4 Ga (figs.

S1C and S2C).

Solving for a sample_s continuous thermal

history from an observed radiometric age and

an inferred spatial distribution of the daughter

product is an ill-posed problem: A family of

thermal limits can be uniquely constrained,

although a single solution does not generally

exist (19). For instance, let us suppose that the

nakhlites were heated to some peak temperature

during ejection from Mars at 11 Ma. If we

assume that the meteorites cooled diffusively

and degassed 40Ar* diffusively solely during

this ejection event, then following the methods

of (5), we find that the central temperatures of

these meteorites could not have exceeded

È350-C for even short periods of time (no

more than a few hours) (Fig. 2). This is a con-

servative upper limit, because we assume (i)

that the diffusion domains are spherical and that

during the other 1.3 billion years of history (ii)

there was no other diffusive loss of 40Ar* and

(iii) no loss of 40Ar* caused by nonthermal

mechanisms (such as weathering or shock).

These results are consistent with petrographic

constraints, which suggest that the nakhlites

have been shocked only to peak pressures of

10 to 20 GPa and peak temperatures of –50- to

100-C, respectively Efollowing (24, 25) and

using ambient martian surface temperatures

between –120- and 0-C^. Given the petrograph-

ic similarities linking the nakhlites, it is likely

that the conclusions drawn from Nakhla and

Lafayette extend to the five other known

meteorites in this class.

Because the magnetization of the nakhlites

is thought to be dominated by titanomagnetite

with a Curie point of È500- to 550-C (26),

much of the magnetization measured in the

nakhlites is likely to have been a thermo-

remanence that originated on Mars at 1.3 Ga.

However, this remanence is likely to have been

modified by shock (27).

Our results are consistent with the observed

low shock state of nakhlites (24, 25), which

implies that they were not heat-sterilized (that

is, they were cooler than È100-C) during

ejection from Mars and transfer to Earth.

Although ALH84001 also is thought to have

experienced only mild heating during its trans-

fer to Earth (5, 28), the case for the nakhlites is

stronger because of their substantially lower

shock state (29). This illustrates the efficien-

cy of mechanisms for ejecting weakly shocked

rocks from Mars (24, 30) and underscores

the possibility that the terrestrial planets

have not been biologically isolated from one

another.

Finally, these results highlight the differ-

ence in thermal histories between Mars and

Earth. The small amounts of 40Ar* degassing

observed for the nakhlites and particularly

for ALH84001 require that they must have

been at low temperatures for nearly their

entire histories. Linearly extrapolating the HRD

Arrhenius relations (Fig. 1 and fig. S1) to low

temperatures, we find that during the past 1.3

billion years, the three nakhlites could not

have been at a constant temperature exceeding

–8- to –49-C, depending on which Arrhenius

model for the HRD is used (Fig. 3A and fig.

S3A). A constant temperature of no more

than –2- to –43-C lasting for 200 million

Fig. 1. Diffusivity as a function
of temperature (Arrhenius plot)
for martian meteorite Nakhla
(subsample 1) inferred from
39Ar release data of Swindle
and Olson (15). Circles are the
diffusion coefficients as calculated
following (16). The bold gray curve
shows the best-fit two-domain
model, which contains a volume
fraction fv of 3% LRD mixed with
97% HRD. The solid and dotted
black lines show model D(T)/a2 for
the HRD and LRD, respectively. The
dashed black line shows the one-
domain model, given by the linear
regression fit only to the subset
HRD array [it includes the 375-
to 675-C steps (20)]. Error bars
(specified by a vertical line
through each point) are smaller
than the size of the circle for all
but the two lowest temperature
steps. Similar results are obtained
for both a second Nakhla sub-
sample and for Lafayette (fig. S1).

Fig. 2. Measured and modeled
40Ar*/39Ar ratio evolution spectra
for martian meteorite Nakhla (sub-
sample 1). These spectra were
calculated using the two-domain
model in Fig. 1 for various assumed
diffusively cooling thermal pulses
experienced by the HRD. Following
(19), we found that it takes several
hours for the meteorites to cool to
ambient temperatures. The LRD
was assumed to contain no radio-
genic Ar (40Ar*), and the spatial
distribution of 40Ar* within the
HRD was assumed to be uniform
before ejection. Shown are the
calculated 40Ar*/39Ar ratios R (nor-
malized to the bulk ratio Rbulk)
plotted as a function of the cumu-
lative 39Ar release fraction SF39Ar.
Circles are the data of (15). Solid
curves correspond to various peak
temperature pulses during ejection
from Mars at 11 Ma: black, no dif-
fusive loss experienced by the HRD; green, 250-C; pink, 300-C; red, 350-C. Dashed curves are the same
calculations using the one-domain model shown in Fig. 1. Error bars (specified by a vertical line through
each point) are smaller than the size of the circle for all but the nine lowest temperature steps. Similar
results are obtained for both a second Nakhla subsample and for Lafayette (fig. S2).
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years of the past 1 billion years of Nakhla_s
history is also required. This result is consist-

ent with constraints derived from ALH84001,

which suggest that since 4 Ga, it could not

have been at a constant temperature exceeding

–60- to –70-C, and since 3.5 Ga it could not

have been warmer than –7- to þ7-C for all

but the briefest time period (1 million years)

(Fig. 3B and fig. S3B). Given our assump-

tions, these are conservative upper limits. In

all, four subsamples from three rocks taken

from two martian meteorite classes with vast-

ly different ages, petrographic textures, com-

positions, and argon diffusion kinetics give

similar constraints on martian temperatures.

Our results may seem surprising given that

Mars_ obliquity and surface temperatures are

thought to have regularly reached high values

over the planet_s entire history, with dominant

frequencies of È120,000 years and longer

(1, 31). However, because temperature changes

at the martian surface will be attenuated at

depth, deeply buried rocks may not sample

these events (1, 32). Although the burial depths

of the martian meteorites are largely unknown,

it is conceivable that ALH84001 was at more

than 1 km depth for the past 4 billion years,

whereas the nakhlites likely resided at depths of

between a few meters to no more than a few

hundred meters (33). Therefore, all of the

meteorites subjected to the thermochronological

calculations described here should not have

been subject to diurnal or annual thermal

variations. ALH84001 may not have sampled

even the longest-period obliquity-induced ther-

mal waves. However, the nakhlites formed at

such shallow depths that they almost certainly

experienced elevated temperatures associated

with the full frequency range of obliquity

changes since 1.3 Ga.

Our calculations imply that during the past 4

billion years, average temperatures within the

top few kilometers of the martian crust were not

significantly warmer than the present cold

(subzero) conditions and therefore that pure

liquid water was not likely to have been stable

at the martian surface for extended periods of

time. This is consistent with suggestions (34)

that the secondary minerals only observed in

these meteorites are the products of brief (less

than a few days) interactions with liquid water.
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Genomic Sequencing of
Pleistocene Cave Bears
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Despite the greater information content of genomic DNA, ancient DNA studies
have largely been limited to the amplification of mitochondrial sequences. Here
we describe metagenomic libraries constructed with unamplified DNA ex-
tracted from skeletal remains of two 40,000-year-old extinct cave bears. Anal-
ysis of È1 megabase of sequence from each library showed that despite
significant microbial contamination, 5.8 and 1.1% of clones contained cave
bear inserts, yielding 26,861 base pairs of cave bear genome sequence. Com-
parison of cave bear and modern bear sequences revealed the evolutionary
relationship of these lineages. The metagenomic approach used here es-
tablishes the feasibility of ancient DNA genome sequencing programs.

Genomic DNA sequences from extinct spe-

cies can help reveal the process of molecular

evolution that produced modern genomes.

However, the recovery of ancient DNA is tech-

nologically challenging, because the mole-

cules are degraded and mixed with microbial

contaminants, and individual nucleotides are

often chemically damaged (1, 2). In addition,

ancient remains are invariably contaminated

with modern DNA, which amplifies efficient-

ly compared with ancient DNA, and therefore

inhibits the detection of ancient genomic

sequences (1, 2). These factors have limited

most previous studies of ancient DNA se-

quences to polymerase chain reaction (PCR)

amplification of mitochondrial DNA (3–8). In

exceptional cases, small amounts of single-

copy nuclear DNA have been recovered from

ancient remains less than 20,000 years old

obtained from permafrost or desert environ-

ments, which are well suited to preserving

ancient DNA (9–12). However, the remains

of most ancient animals, including hominids,

have not been found in such environments.

To circumvent these challenges, we devel-

oped an amplification-independent direct-

cloning approach to constructing metagenomic

libraries from ancient DNA (Fig. 1). Ancient

remains are obtained from natural environ-

ments in which they have resided for thousands

of years, and their extracted DNA is a mixture

of genome fragments from the ancient or-

ganism and sequences derived from other or-

ganisms in the environment. A metagenomic

approach, in which all genome sequences in an

environment are anonymously cloned into a

single library, may therefore be a powerful al-

ternative to the targeted PCR approaches that

have been used to recover ancient DNA mol-

ecules. We chose to explore this strategy with

the extinct cave bear instead of an extinct

hominid, to unambiguously assess the issue of

modern human contamination (1, 2). In addi-

tion, because of the close evolutionary relation-

ship of bears and dogs, cave bear sequences in

these libraries can be identified and classified

by comparing them to the available annotated

dog genome. The phylogenetic relationship of

cave bears and modern bear species has also

been inferred from mitochondrial sequences,

providing the opportunity to compare the phylo-

genetic information content of cave bear mito-

chondrial and genomic DNA (13).

We extracted DNA from a cave bear tooth

recovered from Ochsenhalt Cave, Austria, and

a cave bear bone from Gamssulzen Cave,

Austria, dated at 42,290 (error þ970/–870)

and 44,160 (þ1400/–1190) years before the

present, respectively, by accelerator mass spec-

trometry radiocarbon dating (table S1). We

used these ancient DNA molecules to con-

struct two metagenomic libraries, designated

CB1 and CB2 (Fig. 1) (14). These libraries

were constructed in a laboratory into which

modern carnivore DNA has never been intro-

duced. Ancient DNA molecules were blunt

end–repaired before ligation but were otherwise

neither enzymatically treated nor amplified. We

sequenced 9035 clones E1.06 megabases (Mb)^
from library CB1 and 4992 clones (1.03 Mb)

from library CB2. The average insert sizes

for each library were 118 base pairs (bp) and

207 bp, respectively.

We compared each insert in these libraries

to GenBank nucleotide, protein, and environ-

mental sequences, and the July 2004 dog whole

genome shotgun assembly, by using Basic

Local Alignment Search Tool (BLAST) soft-

ware with an expect value cutoff of 0.001 and

a minimum hit size of 30 bp (14–16). 1.1%

of clones in library CB1 (Fig. 2A) and 5.8% of

clones in library CB2 (Fig. 2B) had significant

hits to dog genome or modern bear sequences.

Our direct-cloning approach produces chimeric

inserts, so we defined as candidate cave bear
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