Multi-phase late-Neogene exhumation history of the Aar massif, Swiss central Alps

Pierre G. Valla, Meinert Rahn, David L. Shuster and Peter A. van der Beek

ABSTRACT

The late-Neogene evolution of the European Alps was influenced by both tectonic and climatically driven erosion processes, which are difficult to disentangle. We use low-temperature thermochronometry data from surface and borehole samples in the Aar massif–Rhone valley (Swiss central Alps) to constrain the exhumation history of the region. Multiple exhumation events are distinguished and linked to regional-scale tectonic deformation (before 5 Ma), short-lived climatically driven orogen contraction (between 4 and 3 Ma), and glacial valley carving since c. 1 Ma. Compared with previous studies, we clearly show the existence of two separate exhumation phases in the Late Miocene–Pliocene and better constrain the onset of glacial valley carving. The hydrothermal activity and geotherm anomalies currently observed in the borehole have been local and short-lived, with only a minor influence on thermochronometric observations. We thus suggest that late-stage glacial valley carving may have triggered topography-driven fluid flow and transient hydrothermal circulation.

Introduction

Quantifying mountain evolution, as well as sediment transfer to surrounding basins, is important for understanding potential feedbacks between climate, erosion and tectonics (e.g., Molnar and England, 1990; Raymo and Ruddiman, 1992). However, these couplings are difficult to decipher because the involved processes are often interrelated (Roe et al., 2008; Whipple, 2009), promoting transient erosion or topographic response (Willett and Brandon, 2002; Whipple and Meade, 2006). The late-Neogene evolution of the European Alps is a classic illustration of such a debate (see review in Willett, 2010). Sediment budgets from basins surrounding the Alps suggest a significant increase in accumulation rates since c. 5 Ma (Kuhlemann et al., 2002), roughly concordant with (1) the onset of denudation in the northern Alpine foreland basin (Cederbom et al., 2004, 2011), (2) increased Alpine exhumation (Vernon et al., 2008) and (3) potential migration of deformation from the frontal Jura (Becker, 2000) to the internal parts of the belt (Willett et al., 2006). However, exhumation histories across the European Alps have led to contrasting conclusions concerning the existence and precise timing of this increase, as well as the nature of the forcing processes. Ongoing tectonic deformation and crustal accretion (Persaud and Pfiffner, 2004; Schlunegger and Mosar, 2011), orogen-perpendicular extension (e.g., Reinecker et al., 2008; Cardello et al., 2015) and regional-scale slab unloading (Baran et al., 2014; Fox et al., 2015) have been proposed as potential tectonic triggers. Drainage rearrangement leading to river capture and transient incision has also been proposed (Ziegler and Frafel, 2009; Schlunegger and Mosar, 2011; Yanites et al., 2013). Alternatively, climatic processes have been suggested, including a transition to wetter conditions (Cederbom et al., 2004, 2011; Willett et al., 2006) or the (more recent) impact of Pliocene–Quaternary glaciation (Hauesellmann et al., 2007; Glotzbach et al., 2011; Valla et al., 2011, 2012; Mahéo et al., 2012; Fox et al., 2015). Better temporal constraints on bedrock exhumation should help to elucidate which processes were the primary drivers of the late-stage Alpine evolution.

In this study, we apply multiple low-temperature thermochronometric systems to bedrock samples along both a 2 km surface elevation profile and a 500 m deep borehole in the Swiss central Alps. Our objective is to quantitatively constrain the late-Neogene exhumation history of the region and assess the potential climatic or tectonic controls on it.

Setting and methods

The Visp–Brigerbad area lies in the upper Rhône valley between the crystalline Aar massif and the sedimentary Helvetic and Penninic nappes (Fig. 1). It encompasses two major tectonic boundaries: the Penninic frontal thrust (PFT) and the Rhône–Simplon fault (RSF) (Mancktelow, 1985, 1992; Seward and Mancktelow, 1994; Campani et al., 2010). The modern drainage pattern follows the tectonic structures (Kühni and Pfiffner, 2001), influenced by the exhumation of the External Crystalline Massifs (ECMs) since Oligocene–Early Miocene times (Schmid et al., 2004), while the overall high Alpine elevation has been acquired at least since Miocene times (Campani et al., 2012). The current kinematics of the
central Swiss Alps show no active convergence (Nocquet and Calais, 2004) but evidence for orogen-parallel extension (Champagnac et al., 2004). The area shows a strong glacial imprint with high topographic relief and glacially shaped cross-profiles along the Rhône valley (Norton et al., 2010). This valley has been glacially deepened during Quaternary times (Valla et al., 2011), with large glacial overdeepenings (Finckh and Frei, 1991; Rosselli and Olivier, 2003) filled by post-glacial sediments (Hinderer, 2001). Average Quaternary and Holocene erosion patterns (Champagnac et al., 2007, 2009) closely correlate with surface-uplift rates of up to >1 mm a\(^{-1}\) in the upper Rhône valley (Fig. 1). Hydrothermal springs and geothermal anomalies occur along the Rhône valley, apparently associated with major tectonic structures (e.g. Sonney and Vuataz, 2008, 2009). The importance and persistence of these hydrothermal systems remain poorly constrained.

We use low-temperature apatite (U–Th–Sm)/He (AHe) and fission-track (AFT) thermochronometry, including fission-track length (TL) measurements, to quantify the late-Neogene exhumation history of the area. The AHe and AFT systems are characterised by closure temperatures of 50–90 °C (Shuster et al., 2006) and 100–120 °C (Gallagher et al., 1998), respectively, and are sensitive to topographic changes (e.g. Stüwe et al., 1994; Braun, 2002). Geothermal anomalies and topography-driven hydrothermal circulation may also affect low-temperature thermochronometers (Ehlers, 2005; Dempster and Persano, 2006; Whipp and Ehlers, 2007); this sensitivity can help in assessing the persistence of near-surface geothermal systems (e.g. Gorynski et al., 2014). Here, we combine six surface samples (VIS) collected along an elevation profile (Valla et al., 2011) with three new samples (MRP) obtained along a 500 m deep geothermal borehole, covering ~3 km elevation in total (Table 1). AHe ages for the VIS samples have been previously reported (Valla et al., 2011). We report here new AFT data including TL distributions for all VIS and MRP samples (Table 2) and

![Geological sketch map of the Swiss central Alps (after Schmid et al., 2004) with main litho-tectonic units and major tectonic structures (see legend). White circles represent sampling locations (BR-02 is the geothermal borehole, see Fig. 7B), the thick black line indicates the cross-section shown in Fig. 2B, and thin black lines depict surface-uplift rates from geodetic measurements with respect to Laufenburg (Schlatter, 2014). Inset shows the location of the study area within the European Alps.](image-url)

Fig. 1 Geological sketch map of the Swiss central Alps (after Schmid et al., 2004) with main litho-tectonic units and major tectonic structures (see legend). White circles represent sampling locations (BR-02 is the geothermal borehole, see Fig. 7B), the thick black line indicates the cross-section shown in Fig. 2B, and thin black lines depict surface-uplift rates from geodetic measurements with respect to Laufenburg (Schlatter, 2014). Inset shows the location of the study area within the European Alps.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Longitude (°E)</th>
<th>Latitude (°N)</th>
<th>Elevation (m) (depth below valley floor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS-01*</td>
<td>7.91667</td>
<td>46.34390</td>
<td>2925</td>
</tr>
<tr>
<td>VIS-03*</td>
<td>7.92035</td>
<td>46.32918</td>
<td>2100</td>
</tr>
<tr>
<td>VIS-04*</td>
<td>7.92432</td>
<td>46.31988</td>
<td>1600</td>
</tr>
<tr>
<td>VIS-05*</td>
<td>7.93780</td>
<td>46.31788</td>
<td>1400</td>
</tr>
<tr>
<td>VIS-06*</td>
<td>7.98339</td>
<td>46.32999</td>
<td>850</td>
</tr>
<tr>
<td>VIS-07*</td>
<td>7.95333</td>
<td>46.30967</td>
<td>670</td>
</tr>
<tr>
<td>MRP-424</td>
<td>7.93032</td>
<td>46.30220</td>
<td>487 (~167)</td>
</tr>
<tr>
<td>MRP-425</td>
<td>7.93032</td>
<td>46.30220</td>
<td>321 (~333)</td>
</tr>
<tr>
<td>MRP-426</td>
<td>7.93032</td>
<td>46.30220</td>
<td>157 (~497)</td>
</tr>
</tbody>
</table>

Apatite grains were extracted from crushed bedrock samples using standard magnetic and heavy-liquid separation techniques.
Table 2 Apatite fission-track data of VIS and MRP samples.

<table>
<thead>
<tr>
<th>Sample N° and locality</th>
<th>Elevation (m)</th>
<th>Mineral (No. crystals)</th>
<th>Spontaneous ps (Ns)</th>
<th>Induced pi (Ns)</th>
<th>2(P_v^2)</th>
<th>Dosimeter (\mu^+) (N(\mu))</th>
<th>Central FT Age (Ma)</th>
<th>Mean TL ((\mu)m)</th>
<th>SD of TL distribution</th>
<th>Mean Dpar (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS-01 Garsthorn</td>
<td>2925</td>
<td>Apatite (25)</td>
<td>0.011 (274)</td>
<td>0.483 (11561)</td>
<td>0.98</td>
<td>15.63 (7989)</td>
<td>6.4 (0.4–0.4)</td>
<td>14.24</td>
<td>1.20 (67)</td>
<td>1.80 (0.13)</td>
</tr>
<tr>
<td>VIS-03 Bischêru</td>
<td>2100</td>
<td>Apatite (40)</td>
<td>0.008 (318)</td>
<td>0.347 (13793)</td>
<td>1.00</td>
<td>15.63 (7991)</td>
<td>6.2 (0.4–0.4)</td>
<td>14.21</td>
<td>1.17 (87)</td>
<td>1.91 (0.16)</td>
</tr>
<tr>
<td>VIS-04 Bodma</td>
<td>1600</td>
<td>Apatite (40)</td>
<td>0.005 (178)</td>
<td>0.281 (10444)</td>
<td>1.00</td>
<td>15.63 (7993)</td>
<td>4.6 (0.4–0.4)</td>
<td>13.76</td>
<td>1.58 (70)</td>
<td>1.96 (0.15)</td>
</tr>
<tr>
<td>VIS-05 Tähischinu</td>
<td>1400</td>
<td>Apatite (40)</td>
<td>0.003 (135)</td>
<td>0.193 (7940)</td>
<td>0.22</td>
<td>15.64 (7996)</td>
<td>4.6 (0.4–0.4)</td>
<td>13.87</td>
<td>1.27 (44)</td>
<td>1.90 (0.17)</td>
</tr>
<tr>
<td>VIS-06 Chilchmatte</td>
<td>850</td>
<td>Apatite (40)</td>
<td>0.005 (201)</td>
<td>0.380 (15971)</td>
<td>1.00</td>
<td>15.64 (7998)</td>
<td>3.4 (0.2–0.3)</td>
<td>14.26</td>
<td>1.28 (100)</td>
<td>1.82 (0.16)</td>
</tr>
<tr>
<td>VIS-07 Gamsen</td>
<td>670</td>
<td>Apatite (40)</td>
<td>0.004 (201)</td>
<td>0.373 (18249)</td>
<td>0.96</td>
<td>15.65 (8000)</td>
<td>3.0 (0.2–0.2)</td>
<td>13.79</td>
<td>1.11 (29)</td>
<td>1.94 (0.20)</td>
</tr>
<tr>
<td>MRP-424 Brigerbad, –167 m</td>
<td>487</td>
<td>Apatite (40)</td>
<td>0.004 (182)</td>
<td>0.421 (17047)</td>
<td>1.00</td>
<td>15.65 (8002)</td>
<td>2.9 (0.2–0.2)</td>
<td>13.36</td>
<td>1.29 (72)</td>
<td>2.77 (0.21)</td>
</tr>
<tr>
<td>MRP-425 Brigerbad, –333 m</td>
<td>321</td>
<td>Apatite (40)</td>
<td>0.003 (106)</td>
<td>0.367 (11848)</td>
<td>1.00</td>
<td>15.66 (8004)</td>
<td>2.4 (0.2–0.2)</td>
<td>13.02</td>
<td>1.77 (27)</td>
<td>2.91 (0.33)</td>
</tr>
<tr>
<td>MRP-426 Brigerbad, –497 m</td>
<td>157</td>
<td>Apatite (40)</td>
<td>0.001 (38)</td>
<td>0.135 (5729)</td>
<td>0.88</td>
<td>15.66 (8006)</td>
<td>1.8 (0.3–0.3)</td>
<td>12.84</td>
<td>2.25 (18)</td>
<td>2.22 (0.21)</td>
</tr>
</tbody>
</table>

(i) Apatite grains were mounted with epoxy on glass slides, polished, and etched at 21°C for 20 s with 5N HNO₃ to reveal spontaneous fission tracks. Mounts were then covered with U-free white mica sheets and sent to irradiation at the FRM-II reactor (Garching, Germany), together with CNS dosimeter glasses. After irradiation, white micas were etched for 45 min in 50% HF to reveal induced tracks. (ii) Fission tracks were counted and confined track lengths measured using transmitted light at 1600x magnification on a Zeiss Axioplan microscope (Basel University, Switzerland). Central ages (Galbraith and Laslett, 1993) and 2\(\sigma\) errors were calculated using the IUGS-recommended zeta calibration approach (Hurford and Green, 1983). (iii) Track densities are (No. tracks) / (No. crystals) - 1. All samples passed the statistical \(\chi^2\) tests indicating that single-grain ages belong to one single age population. Track length (TL) and Dpar data are given in 10⁻⁶ m, SD = 1\(\sigma\) standard deviation. Dpar measurements indicate elevated Cl contents for the borehole samples (MRP). (iv) Preparation included selection of grains with euhedral shape, uniform size and absence of inclusions. (ii) Single-crystal aliquots of apatite were wrapped in Pt foils and degassed by laser heating (Tremblay et al., 2015) under ultra-high vacuum using a feedback-controlled 70-W diode laser at the Noble Gas Thermochronometry Laboratory of the Berkeley Geochronology Center, USA. He abundances were measured by isotope dilution with \(^{3}He\) using a quadrupole mass spectrometer operated in static vacuum mode. Degassed aliquots were dissolved in U, Th and Sm concentrations were measured by isotope dilution using an ICP-MS. Analytical uncertainties are <1, -3 and –2% for U, Th and Sm measurements respectively; and <1% for \(^{3}He\) measurements. (iii) An vertical correction \(F_v = \frac{\alpha}{\beta}\) (the fraction of alpha particles produced within the crystal) was applied to calculate the (U–Th–Sm)/He age following Farley et al. (1996). Bold numbers are mean ages calculated from the replicates; 1\(\sigma\) error for mean ages is standard deviation of replicate ages. Replicate analyses of Durango apatite yielded a <5% reproducibility compared to the reference age.
Results

Surface (VIS) and borehole (MRP) samples show AFT and AHe ages of 1.8–6.5 Ma and 0.5–4.5 Ma respectively (Fig. 2B). From the age-elevation relationships, an apparent exhumation rate of ~0.6–0.7 km Ma\(^{-1}\) may be derived from both AFT and AHe ages, suggesting steady exhumation since the late Neogene. Track lengths for VIS samples are relatively long (mean TL \~14 \text{ \textmu}m) with low dispersion, while borehole (MRP) samples are associated with shorter (mean TL \~13 \text{ \textmu}m) and more dispersed TL distributions (Fig. 2A). However, the latter are potentially biased by the relatively low number of measured track lengths for MRP-425 and MRP-426 (<50, Table 2) and should thus be interpreted with caution.

HeFTy modelling of individual samples reveals a complex late-Neogene cooling history for the area.
High-elevation samples suggest rapid cooling until ~6–5 Ma (our data cannot constrain the onset of this phase, Fig. 3A,B), while lower samples indicate a later cooling event between c. 4 and 3 Ma (Fig. 3E,F). The late-stage history is characterised by rapid cooling since c. 1 Ma for low-elevation and borehole samples (Figs. 3F and 4). All samples are from the Aar massif, with no significant fault identified between sample locations and no AFT age-offset at a more regional scale (Fig. 6). They should thus share a common cooling history, which we quantitatively constrained using QTQt modelling (Fig. 5). Output results confirm a multi-step cooling history (based on a palaeo-geothermal gradient of ~26–28 °C km⁻¹ predicted from QTQt modelling) including the following exhumation phases: (1) before 5 Ma at ~1 km Ma⁻¹, (2) a pulse at ~1.5 km Ma⁻¹ between 4 and 3 Ma and (3) spatially variable exhumation since 1–0.8 Ma (i.e. from <0.1 km Ma⁻¹ for VIS-01 up to >1.5 km Ma⁻¹ for VIS-07, Fig. 5) associated with an increase in the geothermal gradient. Finally, we used each individual sample’s apatite partial annealing zone (APAZ ~60–120 °C, i.e. in which information on cooling is recorded by AFT and TL data, Fig. S3) to link relevant AFT time slices from HeFTy modelling into a common time–temperature path, allowing us to qualitatively estimate a shared palaeo-geothermal gradient. We obtained maximum overlap with palaeo-geothermal gradients of 30 ± 5 °C km⁻¹ (Fig. S4), in agreement with QTQt modelling results.

Discussion

Our extensive thermochronometric dataset reveals the late-Neogene exhumation history of the Aar massif. Both AFT and AHe age-elevation relationships suggest steady exhumation at ~0.6–0.7 km Ma⁻¹ (Fig. 2B). However, this apparent exhumation rate may have been affected by large-scale topographic changes, such as glacial valley deepening/widening (e.g. Braun, 2002; Densmore et al., 2007; Valla et al., 2010; Olen et al., 2012), and, therefore, cannot be taken at face value.

Previous studies using ⁴He/³He thermochronometry on VIS samples (Figs. 3 and 4). AFT and AHe age-elevation relationships suggest steady exhumation at ~0.6–0.7 km Ma⁻¹ (Fig. 2B). However, this apparent exhumation rate may have been affected by large-scale topographic changes, such as glacial valley deepening/widening (e.g. Braun, 2002; Densmore et al., 2007; Valla et al., 2010; Olen et al., 2012), and, therefore, cannot be taken at face value.

Previous studies using ⁴He/³He thermochronometry on VIS samples (Figs. 3 and 4). AFT and AHe age-elevation relationships suggest steady exhumation at ~0.6–0.7 km Ma⁻¹ (Fig. 2B). However, this apparent exhumation rate may have been affected by large-scale topographic changes, such as glacial valley deepening/widening (e.g. Braun, 2002; Densmore et al., 2007; Valla et al., 2010; Olen et al., 2012), and, therefore, cannot be taken at face value.
(Fig. 2, Valla et al., 2011) and compiling regional AFT and AHe data (Valla et al., 2012) came to different conclusions about the late-Neogene exhumation history of the area. Both studies proposed late-stage differential exhumation histories between high- and low-elevation samples, which were interpreted as a record of glacial valley carving (Valla et al., 2011). The 4He/3He data constrained the time of onset of this phase of major relief increase to be between 0.5 and 1.5 Ma (Valla et al., 2012). However, the late-Miocene to Pliocene history of the area remains unclear, with reported rapid exhumation occurring either between 10 and 6 Ma (Vernon et al., 2009; Valla et al., 2012) or more recently until c. 4–3 Ma (Vernon et al., 2009; Valla et al., 2011). Whether these are continuous or separate events remained unresolved by previous thermochronometric investigations.

Our new thermal modelling suggests a three-phase exhumation history of the area. Note that HeFTy and QTQt modelling outcomes may differ slightly with respect to the predicted cooling histories, although their first-order features clearly overlap (Fig. S2); while HeFTy modelling uses the thermochronological information of each individual sample (Figs. 3 and 4), QTQt modelling considers the thermochronological information of the entire dataset to derive a common and thus averaged cooling history (Figs. 5 and S1). This may lead to distinct details in the resulting time–temperature paths for individual samples (Fig. S2). We favour here the QTQt modelling approach, which allows us to reconstruct a regional exhumation history representative of the entire dataset. Rapid late-Miocene exhumation until c. 5 Ma appears to be regionally significant, with similar evidence reported in other Alpine ECMs: the Mont-Blanc (Glotzbach et al., 2008, 2011), the Ecrins-Pelvoux (van der Beek et al., 2010), the Aiguilles Rouges (Valla et al., 2012) and the Gotthard (Glotzbach et al., 2010) massifs. This coeval rapid exhumation of the ECMs, concordant with frontal migration of tectonic deformation in the Jura Mountains (Sommaruga, 1999; Becker, 2000), may reflect underplating of normal-thickness continental crust below the

Fig. 5 Selected thermal histories for (A) VIS-01, (B) VIS-07, (C) MRP-424 and (D) MRP-426 from joint thermal modelling of all VIS and MRP samples using QTQt software (Gallagher, 2012). Black lines represent the expected model (weighted mean model) and its 95% confidence intervals; red lines show the maximum-likelihood model (best fitting model). Numerical modelling was run for 3×10^5 iterations to ensure model convergence (cf. Fig. S1), including general t–T priors of 6.5±6.5 Ma and 70±70 °C, respectively, no reheating and a shared steady geothermal gradient (general prior of 30±5 °C km$^{-1}$) except for present-day conditions (measured present-day temperatures as shown in Figs. 3,4). The model converged towards an inferred palaeo-geothermal gradient of ~26–28 °C km$^{-1}$. See Fig. S1 for model convergence and performance.
ECMs (e.g. Cardello et al., 2015) preceding an overall slow-down of Alpine convergence (Schmid et al., 1996). Our modelling also constrains a subsequent Pliocene (between c. 4 and 3 Ma) event of 1–1.2 km exhumation. This short episode is coeval with inversion and thrusting of the northern Alpine foreland basin (Cederbom et al., 2011; von Hagke et al., 2012) and associated with denudation of similar magnitude (1–1.5 km) and duration (<1 Ma, e.g. Yanites et al., 2013), suggesting orogen contraction and tectonic deformation in the area following the transition to wetter climatic conditions (Cederbom et al., 2004, 2011) and/or a major drainage reorganisation (Ziegler and Fraefel, 2009; Schlunegger and Mosar, 2011). Pliocene exhumation has also been proposed in adjacent areas of the Aar massif (Reinecker et al., 2008) and Helvetic nappes (Cardello et al., 2015). However, these studies related exhumation to tectonic denudation along the footwall of the RSF (Fig. 1), whereas our compiled data show no age offset (and thus no different tectonic exhumation) across the RSF and PFT after c. 7 Ma (Fig. 6). This suggests that increased exhumation and the proposed tilting of the Aar massif and Helvetic nappes (Reinecker et al., 2008; Cardello et al., 2015) were linked to a more regional but short-lived event. Finally, the late-stage exhumation inferred from QTQt modelling is similar to previous 4He/3He-derived cooling histories (Valla et al., 2011, 2012), confirming differential exhumation linked to glacial valley carving and relief increase. However, our new data and modelling more tightly constrain the time of onset of glacial valley carving to be at 1 Ma or later (Fig. 5). This timing is coeval with both stratigraphic evidence for major Alpine glaciation in the Po basin (Muttoni et al., 2003) and glacial deepening of the Aare valley (Haeuselmann et al., 2007).

Our data also allow us to discuss the palaeo-geothermal conditions in the area (Fig. 7). The modern geothermal anomaly affecting the area (geothermal gradient >100 °C km⁻¹, Fig. 7B) has been ascribed to topography-driven fluid circulation from high elevations within the fractured Aar massif (Kloos, 2004). The local resurgence at low elevations is probably bound to the PFT (Fig. 7A), suggesting long-lived fluid circulation associated with this tectonic structure (Kloos, 2004). However, this geothermal anomaly is not evidenced in our thermochronometric dataset. Averaged shorter and more dispersed TL distributions for MRP samples (Fig. 2) may be interpreted as evidence for partial resetting due to elevated temperatures, although the relatively low number of measured track lengths may bias the TL distributions. AFT and AHe ages, however, show neither significant younging in the borehole nor curved age-elevation relationships indicative of geothermal perturbation. HeFTy modelling confirms that thermal perturbations have been limited for these samples. Although thermal constraints for the borehole samples allow potential heating into the partial annealing zone during the last 1 Myr, modelling outcomes show maximum reheating below 60 °C (Fig. 4), in agreement with a maximum reservoir temperature of <110 °C from geothermometry (Kloos, 2004). Our QTQt modelling results also suggest that this geothermal anomaly has not been long-lived, predicting a palaeo-geothermal gradient of ~26–28 °C km⁻¹ until c. 1 Ma, in agreement with the best estimate of palaeo-geothermal gradients from HeFTy modelling (Fig. S4), previous thermal modelling of 4He/3He data (Valla et al., 2011) and measurements of the present-day gradient within the Aar massif away from geothermal anomalies (Fig. 7). We thus suggest that glacial topographic relief increase could have reinforced lateral variations in hydrostatic pressure (Ehlers, 2005), driving fluid flow from high elevations to valley bottoms in the fractured Aar massif (Fig. 7A). Hydrothermal circulation and associated geothermal anomalies may have varied during the Quaternary: glacial conditions reduce hydrothermal activity by limiting fluid percolation at high elevations (Maréchal et al., 1999) and decreasing pressure gradients by ice-filling of valleys (Thiébaut et al., 2010). This suggests that the modern high geothermal gradients at the Brigerbad borehole represent transient conditions linked to post-glacial heat evacuation (e.g. Gallino et al., 2009), which explains the minor influence on our thermochronometric data.

Conclusions

We used low-temperature thermochronometry on surface and

![Fig. 6 Age-elevation profile combining VIS and MRP data (black diamonds and triangles, respectively) with literature AFT ages for the Visp-Brigerbad area (black and open circles; Wagner et al., 1977; Soom, 1990; Reinecker et al., 2008). Inset shows sample locations. Black circles indicate samples located south of the Rhône-Simplon fault (RSF) and the Penninic Frontal Thrust (PFT). No age offset is observed between samples from the hangingwall and the footwall of the RSF/PFT, indicating no significant vertical offset along these tectonic structures after AFT system closure (i.e. since ~7 Ma).](image)
borehole samples in the Aar massif to derive tight temporal constraints on the exhumation history of the area. Thermal modelling reveals three distinct exhumation events since the late Neogene. Late-Miocene exhumation appears to have been tectonically driven by crustal underplating below the External Crystalline Massifs; this was followed by a Pliocene regional exhumation pulse, which we suggest was the orogen’s response to wetter climatic conditions and/or drainage reorganisation. Following previous studies, we finally show that Quaternary exhumation has been driven by glacial valley carving since c. 1 Ma or later, potentially triggering local and short-lived hydrothermal activity.

Acknowledgements

We thank T. Ehlers, A. Kounov, an anonymous reviewer and the associate editor for their constructive comments. We also thank K. Gallagher for help with QTQt modelling, M. Buser and P. Hayoz for access to borehole reports and samples, A. Kounov for access to FT facilities at Basel University and N. Fylstra for help with AHe dating. We thank G. Bianchetti (Alpgéo) and J. Jacquod (Norbert SA) for sharing useful borehole information. P.G.V. acknowledges funding from the SNSF (grant Ambi- zione PZ00P2_148191) and the ETH-Zürich COFUND. D.L.S. acknowledges the Ann and Gordon Getty Foundation and the France Berkeley Fund.

References

Alpgéo/Norbert, 2011. Geothermie Brigerbad - Phase II, Forages

Fig. 7 Schematic geological cross-section and geothermal activity. (A) Valley cross-section with major litho-tectonic units (after Schmid et al., 2004) and location of geothermal exploration boreholes at Brigerbad (BB-1 and -2, BR-01 and -02) and in the Aar massif (M-93/17) (after Kloos, 2004; Alpgéo/Norbert, 2011). Coloured arrows represent inferred fluid circulation within the fractured Aar massif and along the Penninic Frontal Thrust (see Figs. 1 and 2A for location). (B) Present-day measured geothermal gradients (Alpgéo/Norbert, 2011) within different boreholes (see Fig. 7A for location). Open stars show MRP sample locations along the BR-02 borehole.

Geothermiques 08-BR1 & 10-BR2: Rapport géologique et hydrogéologique. A l’attention de PG
Geothermie Brig-Glis, 35 pp.
Dempster, T.J. and Persano, C., 2006. Low temperature thermochronology;
resolving geotherm shapes or denudation histories? Geology, 34, 73–76.

117.

Received 8 December 2015; revised version accepted 19 July 2016

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Thermal modelling combining all VIS and MRP samples in QTQt software (Gallagher, 2012).

Figure S2. Comparison of modelled time-temperature paths between HeFTy (grey and white lines) and QTQt (expected model in Fig. S1A, coloured envelope) for VIS-01 (A), VIS-07 (B), MRP-424 (C) and MRP-426 (D) samples.

Figure S3. Thermochronometric information within the APAZ obtained from HeFTy thermal modelling (Figs. 3, 4).

Figure S4. Composite cooling histories of the Visp-Briegerbad region from AFT and TL information (Fig. S3, light grey envelopes show samples with <50 measured TL, i.e. VIS-05 and -07, MRP-425 and -426), considering shared cooling history and geothermal gradient between all VIS and MRP samples.